Neil Strickland

March 16, 2023

- If $n \neq m$ then \mathbb{R}^{n} is not homeomorphic to \mathbb{R}^{m}.
- Put

$$
\begin{aligned}
S O_{3} & =\{3 \times 3 \text { rotation matrices }\}=\left\{A \in M_{3}(\mathbb{R}) \mid A A^{T}=I, \operatorname{det}(A)=1\right\} \\
P & =\left\{\text { trace } 1 \text { projectors in } \mathbb{R}^{4}\right\}=\left\{A \in M_{4}(\mathbb{R}) \mid A^{T}=A^{2}=A, \text { trace }(A)=1\right\} \\
S^{3} & =\text { the 3-sphere }=\left\{x \in \mathbb{R}^{4} \mid x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\} \\
\mathbb{R} P^{3} & =S^{3} / \sim \quad \text { where } u \sim v \text { iff } v= \pm u
\end{aligned}
$$

Then SO_{3}, P and $\mathbb{R} P^{3}$ are homeomorphic to each other but not to S^{3}.

- The Fundamental Theorem of Algebra: if $f(z) \in \mathbb{C}[z]$ is a nonconstant polynomial, then it has a root.
- The Brouwer Fixed Point Theorem: if $f:[0,1]^{n} \rightarrow[0,1]^{n}$ is continuous, then there is a fixed point $x \in[0,1]^{n}$ with $f(x)=x$.
- The Borsuk-Ulam Theorem: if $n>m$ then there is no continuous map $f: S^{n} \rightarrow S^{m}$ with $f(-x)=-f(x)$ for all $x \in S^{n}$.
A key method for proving these results is the theory of cohomology rings.

Examples of cohomology rings

Example

$H^{*}\left(S^{n}\right)$ is the free abelian group generated by $1 \in H^{0}\left(S^{n}\right)$ and an element
$u_{n} \in H^{n}\left(S^{n}\right)$. The ring structure is given by $u_{n}^{2}=0$ (if $n>0$).
Example
Suppose we have distinct points $a_{1}, \ldots, a_{n} \in \mathbb{C}$ and put $M=\mathbb{C} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$.
Define $f_{i}: M \rightarrow S^{1}$ by $f_{i}(z)=\left(z-a_{i}\right) /\left|z-a_{i}\right|$ and put $v_{i}=f_{i}^{*}\left(u_{1}\right)$.
Then $H^{*}(M)$ is the free abelian group generated by $1 \in H^{0} M$ and
$v_{1}, \ldots, v_{m} \in H^{1} M$. The ring structure is given by $v_{i} v_{j}=0$ for all i, j.

Example

Put $F_{n} \mathbb{C}=\left\{z \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$
Given $i \neq j \in\{1, \ldots, n\}$ we define $f_{i j}: F_{n} \mathbb{C} \rightarrow S^{1}$ by $f_{i j}(z)=\left(z_{i}-z_{j}\right) /\left|z_{i}-z_{j}\right|$, and put $a_{i j}=f_{i j}^{*} u_{1}$. Then $H^{*}\left(F_{n} \mathbb{C}\right)$ is freely generated by the elements $a_{i j}$ modulo relations $a_{i j}=a_{j i}$ and $a_{i j}=0$ and $a_{i j} a_{j k}+a_{j k} a_{k i}+a_{k i} a_{i j}=0$ for all i, j, k. One can also give a basis for this ring as a free abelian group.

- The points of a space X can be grouped into path components, where x and y lie in the same path component iff there is a continuous path $s:[0,1] \rightarrow X$ with $s(0)=x$ and $s(1)=y$.
- We write $\pi_{0}(X)$ for the set of path components in X.
- We write $\operatorname{Map}\left(\pi_{0}(X), \mathbb{Z}\right)$ for the set of functions from $\pi_{0}(X)$ to \mathbb{Z}. This is a ring under pointwise addition and multiplication. For example, if X has three path components, then $\operatorname{Map}\left(\pi_{0}(X), \mathbb{Z}\right) \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
- It works out that $H^{0}(X)$ is always isomorphic to $\operatorname{Map}\left(\pi_{0}(X), \mathbb{Z}\right)$. For example, in the common case where X is path-connected, we just have $H^{0}(X)=\mathbb{Z}$.
- If X has the discrete topology, then $\pi_{0}(X)=X$ so $H^{0}(X)=\operatorname{Map}(X, \mathbb{Z})$ In this case it can be shown that $H^{n}(X)=0$ for all $n \neq 0$.

Cochain complexes and differential graded rings

- A cochain complex is a system of abelian groups U^{i} (for $i \in \mathbb{Z}$) equipped with homomorphisms $d: U^{i} \rightarrow U^{i+1}$ such that each composite

$$
U^{i-1} \xrightarrow{d} U^{i} \xrightarrow{d} U^{i+1}
$$

is zero (or more briefly, $d^{2}=0$).
In almost all cases we will have $U^{i}=0$ for $i<0$.

- A differential graded ring is a cochain complex A^{*} together with an element $1 \in A^{0}$ and a multiplication rule giving $a b \in A^{i+j}$ for all $a \in A^{i}$ and $b \in A^{j}$, such that:

$$
\begin{aligned}
1 a & =a=a 1 \text { for all } a \in A^{i} \\
a(b c) & =(a b) c \text { for all } a \in A^{i}, b \in A^{j}, c \in A^{k} \\
a(b+c) & =a b+a c \text { for all } a \in A^{i}, b, c \in A^{j} \\
(a+b) c & =a c+b c \text { for all } a, b \in A^{i}, c \in A^{j} \\
d(1) & =0 \\
d(a b) & =d(a) b+(-1)^{i} a d(b) \text { for all } a \in A^{i}, b \in A^{j} .
\end{aligned}
$$

The last relation is called the Leibniz rule.

We will

- Define what we mean by a cochain complex
- Define what we mean by a graded ring
- Define what we mean by a differential graded ring: a cochain complex with compatible graded ring structure
- Define the cohomology of a cochain complex, and show that the cohomology of a DGR is a graded ring
- For each topological space X define a differential graded ring $C^{*}(X)$, called the singular cochain complex of X
- Define $H^{*}(X)$ to be the cohomology of $C^{*}(X)$.

Cohomology of a cochain complex

- Let A^{*} be a cochain complex. For $i \in \mathbb{Z}$ we put

$$
\begin{array}{ll}
Z^{i}\left(A^{*}\right)=\operatorname{ker}\left(d: A^{i} \rightarrow A^{i+1}\right) \leq A^{i} & \text { (group of cocycles) } \\
B^{i}\left(A^{*}\right)=\operatorname{img}\left(d: A^{i-1} \rightarrow A^{i}\right) \leq A^{i} & \text { (group of coboundaries) }
\end{array}
$$

- As $d^{2}=0$ we have $d\left(B^{i}\left(A^{*}\right)\right)=0$ and so $B^{i}\left(A^{*}\right) \leq Z^{i}\left(A^{*}\right)$.

It is therefore meaningful to define $H^{i}\left(A^{*}\right)=Z^{i}\left(A^{*}\right) / B^{i}\left(A^{*}\right)$
Elements of $H^{i}(X)$ are cosets $[z]=z+B^{i}(X)$, called cohomology classes

- If A^{*} is clear from the context, we will just write Z^{i}, B^{i} and H^{i} instead of $Z^{i}\left(A^{*}\right), B^{i}\left(A^{*}\right)$ and $H^{i}\left(A^{*}\right)$.
- We write Z^{*} for the sequence of groups Z^{i}, and similarly for B^{*} and H^{*}.
- Now let A^{*} be a DGR. Using the Leibniz rule $d(a b)=d(a) b \pm a d(b)$ we find that Z^{*} is a subring of A^{*} and that B^{*} is an ideal in Z^{*}.
- It follows that $H^{*}\left(A^{*}\right)$ has an induced ring structure with $[z][w]=[z w]$ for $z \in Z^{n}$ and $w \in Z^{m}$.
- Example: $A^{*}=\mathbb{Z}[x] \oplus \mathbb{Z}[x] a$ with $d(a)=x$ so $d\left(x^{n}\right)=0, d\left(x^{n} a\right)=x^{n+1}$.

$$
1 \stackrel{0}{\longrightarrow}>a \longmapsto x \xrightarrow{0}>x a \longmapsto x^{2} \stackrel{0}{\longrightarrow}>x^{2} a \longmapsto x^{3}
$$

$Z^{2 k+1}=B^{2 k+1}=0$ and $Z^{2 k}=B^{2 k}=\mathbb{Z} x^{k}$ except $Z^{0}=\mathbb{Z}$ and $B^{0}=0$.
Thus $H^{0}\left(A^{*}\right)=\mathbb{Z}$ and $H^{n}\left(A^{*}\right)=0$ for $n \neq 0$.

- The standard n-simplex is the space

$$
\Delta^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid x_{i} \geq 0 \text { for all } i \text { and } \sum_{i} x_{i}=1\right\}
$$

The vertices of Δ_{n} are just the standard basis vectors e_{0}, \ldots, e_{n}, so $e_{0}=(1,0, \ldots, 0)$ and $e_{1}=(0,1,0, \ldots, 0)$ and $e_{n}=(0, \ldots, 0,1)$.
$-\Delta^{0}$ is a point, Δ^{1} is an interval, Δ^{2} is a triangle, Δ^{3} is a tetrahedron

- We always identify $(1-t, t) \in \Delta^{1}$ with $t \in[0,1]$, so $e_{0} \sim 0$ and $e_{1} \sim 1$.
- We define $S_{k}(X)=\operatorname{Cont}\left(\Delta^{k}, X\right)$, the set of continuous maps $\Delta^{k} \rightarrow X$. As $\Delta^{0}=$ point we can identify $S_{0}(X)$ with X.
As $\Delta^{1}=[0,1]$ we can identify $S_{1}(X)$ with the set of paths in X.
Loosely: $S_{2}(X)$ is the set of triangles in X.

Zeroth cohomology

- $H^{0}(X)=Z^{0}(X) / B^{0}(X)$
- $B^{0}(X)=\operatorname{img}\left(d=0: C^{-1}(X)=0 \rightarrow C^{0}(X)\right)$, so $B^{0}(X)=0$, so $H^{0}(X)=Z^{0}(X)$.
- $Z^{0}(X)=\operatorname{ker}\left(d: C^{0}(X) \rightarrow C^{1}(X)\right)=\{f \in \operatorname{Map}(X, \mathbb{Z}) \mid d(f)=0\}$.
- For a path $u:[0,1] \rightarrow X$ we have $d(f)(u)=f(u(1))-f(u(0))$, so $d(f)=0$ iff $f(u(1))=f(u(0))$ for all paths u.
- In other words, $H^{0}(X)=Z^{0}(X)$ is the set of maps $f: X \rightarrow \mathbb{Z}$ such that $f(x)=f(y)$ whenever x and y can be connected by a path in X.
- In other words, $H^{0}(X)$ is the set of maps $f: X \rightarrow \mathbb{Z}$ that are constant on each path component.
- Thus, if $\pi_{0}(X)$ is the set of path components, then $H^{0}(X)=\operatorname{Map}\left(\pi_{0}(X), \mathbb{Z}\right)$.
- X is path connected if it is nonempty and any two points can be joined by a path. If so, then $\left|\pi_{0}(X)\right|=1$ and $H^{0}(X)$ is just the set of constant functions $X \rightarrow \mathbb{Z}$ so $H^{0}(X) \simeq \mathbb{Z}$.
- Define $C^{k}(X)=\operatorname{Map}\left(S_{k}(X), \mathbb{Z}\right)$ (the set of all functions from $S_{k}(X)$ to \mathbb{Z}).
- $S_{0}(X)=X$ so $C^{0}(X)=\operatorname{Map}(X, \mathbb{Z})$
(the set of all maps $X \rightarrow \mathbb{Z}$, no continuity requirement)
(This is a commutative ring under pointwise addition and multiplication)
- $S_{1}(X)$ is the set of paths in X, so $C^{1}(X)$ is the set of functions from paths to integers.
- We define $d: C^{0}(X) \rightarrow C^{1}(X)$ by $d(f)(u)=f(u(1))-f(u(0))$ for $f \in C^{0}(X)$ and $u:[0,1] \rightarrow X$.
- More detail:
- $f \in C^{0}(X)$ so $f: X \rightarrow \mathbb{Z}$.
- We need to define $d(f) \in C^{1}(X)=\operatorname{Map}\left(S_{1}(X), \mathbb{Z}\right)$,
so for $u \in S_{1}(X)$ we need to define $d(f)(u) \in \mathbb{Z}$.
Here $u:[0,1] \rightarrow X$ so $u(0), u(1) \in X$.
As $f: X \rightarrow \mathbb{Z}$ we have $f(u(0)), f(u(1)) \in \mathbb{Z}$.
- We put $d(f)(u)=f(u(1))-f(u(0))$.
- For $k<0$ we define $S_{k}(X)=\emptyset$ and $C^{k}(X)=0$ and $d=0: C^{k}(X) \rightarrow C^{k+1}(X)$.
- We will define $d: C^{k}(X) \rightarrow C^{k+1}(X)$ for $k>0$ later.

Face maps

- For $0 \leq i \leq n$ we define $\delta_{i}: \Delta_{n-1} \rightarrow \Delta_{n}$ by inserting 0 in position i :

$$
\delta_{i}\left(t_{0}, \ldots, t_{n-1}\right)=\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right) .
$$

- This is the inclusion of the face opposite e_{i}
- For $n=2$:
$\delta_{0}\left(t_{0}, t_{1}\right)=\left(0, t_{0}, t_{1}\right) \quad \delta_{1}\left(t_{0}, t_{1}\right)=\left(t_{0}, 0, t_{1}\right) \quad \delta_{2}\left(t_{0}, t_{1}\right)=\left(t_{0}, t_{1}, 0\right)$.

- For $n=1$: the maps $\delta_{0}, \delta_{1}: \Delta^{0}=\left\{e_{0}\right\} \rightarrow \Delta^{1}$ are given by $\delta_{0}\left(e_{0}\right)=e_{1}$ and $\delta_{1}\left(e_{0}\right)=e_{0}$.

We define $d: C^{k}(X) \rightarrow C^{k+1}(X)$ by

$$
d(f)(v)=\sum_{i=0}^{k+1}(-1)^{i} f\left(v \circ \delta_{i}\right)
$$

In more detail:

- f is assumed to be an element of the group $C^{k}(X)=\operatorname{Map}\left(S_{k}(X), \mathbb{Z}\right)$, so for each $u \in S_{k}(X)$ we have an integer $f(u)$.
- $d(f)$ is supposed to be an element of the group
$C^{k+1}(X)=\operatorname{Map}\left(S_{k+1}(X), \mathbb{Z}\right)$, so for each element $v \in S_{k+1}(X)$ we need to define the element $d(f)(v) \in \mathbb{Z}$.
- So suppose we have $v \in S_{k+1}(X)$, i.e. v is a continuous map $\Delta^{k+1} \rightarrow X$. For $0 \leq i \leq k+1$ we have a face map $\delta_{i}: \Delta_{k} \rightarrow \Delta_{k+1}$, which we can compose with v to get a continuous map $v \circ \delta_{i}: \Delta^{k} \rightarrow X$, or in other words an element $v \circ \delta_{i} \in S_{k}(X)$.
As $f: S_{k}(X) \rightarrow \mathbb{Z}$, we therefore have an integer $f\left(v \circ \delta_{i}\right) \in \mathbb{Z}$.
- We define $d(f)(v)$ to be the alternating sum of the above integers, i.e. $d(f)(v)=\sum_{i=0}^{k+1}(-1)^{i} f\left(v \circ \delta_{i}\right)$.

Cohomology of discrete spaces

- Claim: if X is discrete then $H^{0}(X)=\operatorname{Map}(X, \mathbb{Z})$ but $H^{k}(X)=0$ for $k \neq 0$
- Put $A=\operatorname{Map}(X, \mathbb{Z})$. As X is discrete, any continuous map $u: \Delta_{k} \rightarrow X$ is constant, so $S_{k}(X) \simeq X$ and $C^{k}(X)=\operatorname{Map}\left(S_{k}(X), \mathbb{Z}\right) \simeq A$.
- If $u: \Delta_{k+1} \rightarrow X$ is constant with value x, then $u \circ \delta_{i}: \Delta_{k} \rightarrow X$ is also constant, with the same value.
- The formula for $d: C^{k}(X)=A \rightarrow A=C^{k+1}(X)$ just becomes

$$
d(f)(x)=\sum_{i=0}^{k+1}(-1)^{i} f(x) .
$$

- If k is even: all terms cancel out in pairs, giving $d(f)(x)=0$. If k is odd: there is one term left over, giving $d(f)(x)=f(x)$.
- Thus, the full sequence of groups $C^{k}(X)$ and homomorphisms d looks like

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow C^{0}(X)=A \xrightarrow{0} A \xrightarrow{1} A \xrightarrow{0} A \xrightarrow{1} A \rightarrow \cdots
$$

- For $k<0$ we have $Z^{k}=B^{k}=C^{k}(X)=0$ so $H^{k}(0)=0$.
- $Z^{0}=A$ but $B^{0}=0$ so $H^{0}(X)=Z^{0} / B^{0}=A / 0=A=\operatorname{Map}(X, \mathbb{Z})$.
- For $k>0$, if k is even we have $Z^{k}=B^{k}=A$ and if k is odd we have $Z^{k}=B^{k}=0$. In both cases we have $Z^{k}=B^{k}$ so $H^{k}(X)=Z^{k} / B^{k}=0$.
- Claim: If $0 \leq j \leq i \leq k$ then $\delta_{j} \delta_{i}=\delta_{i+1} \delta_{j}: \Delta^{k-1} \rightarrow \Delta^{k} \rightarrow \Delta^{k+1}$
- Example: $\delta_{2} \delta_{3}=\delta_{4} \delta_{2}: \Delta^{2} \rightarrow \Delta^{4}$:

$\delta_{2}(t)$	$=\left(\begin{array}{lllllll}t_{0}, & t_{1}, & 0, & t_{2}, & t_{3}, & t_{4}\end{array}\right)$
$\delta_{4}\left(\delta_{2}(t)\right)$	$=\left(\begin{array}{llllll}t_{0}, & t_{1}, & 0, & t_{2}, & 0, & t_{3}, \\ t_{4}\end{array}\right)$
$\delta_{3}(t)$	$=\left(\begin{array}{lllllll}t_{0}, & t_{1}, & t_{2}, & 0, & t_{3}, & t_{4}\end{array}\right)$
$\delta_{2}\left(\delta_{3}(t)\right)$	$=\left(\begin{array}{llllll}t_{0}, & t_{1}, & 0, & t_{2}, & 0, & t_{3}, \\ t_{4}\end{array}\right)$

- Claim: the composite $C^{k-1}(X) \xrightarrow{d} C^{k}(X) \xrightarrow{d} C^{k+1}(X)$ is zero.
- By definition, for $f \in C^{k-1}(X)$ and $u \in S_{k+1}(X)$ we have

$$
d^{2}(f)(u)=\sum_{j=0}^{k+1}(-1)^{i} d(f)\left(u \delta_{j}\right)=\sum_{j=0}^{k+1} \sum_{i=0}^{k}(-1)^{i+j} f\left(u \delta_{j} \delta_{i}\right) .
$$

The relation $\delta_{j} \delta_{i}=\delta_{i+1} \delta_{j}$ shows that some terms are the same.
The +1 ensures that matching terms have opposite signs and so cancel.
With more care we can see that there is nothing left, so $d^{2}(f)(u)=0$.

- Thus: $C^{*}(X)$ is a cochain complex, and we can define
$Z^{k}(X)=\operatorname{ker}\left(d: C^{k}(X) \rightarrow C^{k+1}(X)\right)$ and
$B^{k}(X)=\operatorname{img}\left(d: C^{k-1}(X) \rightarrow C^{k}(X)\right)$ and $H^{k}(X)=Z^{k}(X) / B^{k}(X)$.

The cup product

- Given $f \in C^{n}(X)$ and $g \in C^{m}(X)$ we need to define $f g \in C^{n+m}(X)$.
- Here $C^{n+m}(X)=\operatorname{Map}\left(S_{n+m}(X), \mathbb{Z}\right)$ and $S_{n+m}(X)$ is the set of continuous maps $w: \Delta^{n+m} \rightarrow X$, so for each such w we must define $(f g)(w) \in \mathbb{Z}$.
- Define $\Delta^{n} \xrightarrow{\lambda} \Delta^{n+m} \stackrel{\rho}{\leftarrow} \Delta^{m}$ by

$$
\lambda\left(x_{0}, \ldots, x_{n}\right)=\left(x_{0}, \ldots, x_{n}, 0, \ldots, 0\right) \quad \rho\left(y_{0}, \ldots, y_{m}\right)=\left(0, \ldots, 0, y_{0}, \ldots, y_{m}\right) .
$$

- Now $w \lambda: \Delta_{n} \rightarrow X$ so $w \lambda \in S_{n}(X)$ so $f(w \lambda) \in \mathbb{Z}$.
- Also $w \rho: \Delta_{m} \rightarrow X$ so $w \rho \in S_{m}(X)$ so $g(w \rho) \in \mathbb{Z}$.
- We define $(f g)(w)=f(w \lambda) g(w \rho) \in \mathbb{Z}$.
- We also define $1 \in C^{0}(X)=\operatorname{Map}(X, \mathbb{Z})$ to be constant with value 1 .
- These definitions make $C^{*}(X)$ into a differential graded ring: multiplication is distributive and associative with 1 as a two-sided unit, and $d(1)=0$, and $d(f g)=d(f) g+(-1)^{n} f d(g)$.
- The proof is an exercise.
- As discussed previously, there is an induced ring structure on $H^{*}(X)$.
- $H^{*}(X)$ is graded-commutative even though $C^{*}(X)$ is not.

The proof is harder, to be discussed later.

- A cochain map between cochain complexes U^{*} and V^{*} is a system of homomorphisms $\phi: U^{n} \rightarrow V^{n}$ with $d \phi=\phi d: U^{n} \rightarrow V^{n+1}$.
- For such ϕ, we see that $\phi\left(Z^{n}\left(U^{*}\right)\right) \leq Z^{n}\left(V^{*}\right)$ and $\phi\left(B^{n}\left(U^{*}\right)\right) \leq B^{n}\left(V^{*}\right)$ so we have an induced homomorphism $H^{n}(\phi): H^{n}\left(U^{*}\right) \rightarrow H^{n}\left(V^{*}\right)$.
- This is functorial: $H^{n}(1)=1$ and $H^{n}(\psi \phi)=H^{n}(\psi) H^{n}(\phi)$ for cochain maps $U^{*} \xrightarrow{\phi} V^{*} \xrightarrow{\psi} W^{*}$.
- If U^{*} and V^{*} are DGRs: a DGR morphism is a cochain map that also preserves products. For such ϕ, the induced map
$H^{*}(\phi): H^{*}\left(U^{*}\right) \rightarrow H^{*}\left(V^{*}\right)$ is a graded ring homomorphism.
- Now let $p: X \rightarrow Y$ be a continuous map. For $f \in C^{n}(Y)$ and $u \in S_{n}(X)=\operatorname{Cont}\left(\Delta^{n}, X\right)$ we have $p u \in \operatorname{Cont}\left(\Delta^{n}, Y\right)=S_{n}(Y)$ and so $f(p u) \in \mathbb{Z}$. We define $p^{*}(f) \in C^{n}(X)$ by $p^{*}(f)(u)=f(p u)$.
- Using $p \circ\left(u \circ \delta_{i}\right)=(p \circ u) \circ \delta_{i}$, we see that $p^{*}(d(f))=d\left(p^{*}(f)\right)$ in $C^{n+1}(X)$. Thus, p^{*} is a cochain map.
- Using $p \circ(w \circ \lambda)=(p \circ w) \circ \lambda$ and $p \circ(w \circ \rho)=(p \circ w) \circ \rho$, we see that $p^{*}(f g)=p^{*}(f) p^{*}(g)$ in $C^{n+m}(X)$. Thus, p^{*} is a morphism of DGRs, and so induces a graded ring homomorphism $H^{*}(Y) \rightarrow H^{*}(X)$, which we also call p^{*}.

Topological homotopy

- Homotopy is compatible with composition. In detail, if $X \xrightarrow{f_{0}, f_{1}} Y \xrightarrow{g_{0}, g_{1}} Z$ and we have homotopies $F: f_{0} \simeq f_{1}$ and $G: g_{0} \simeq g_{1}$, then we can define $K: g_{0} f_{0} \simeq g_{1} f_{1}$ by $K(t, x)=G(t, F(t, x))$.
- We write $[X, Y]=\operatorname{Cont}(X, Y) / \simeq$ for the set of homotopy classes.
- Example: for $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, every $f: S^{1} \rightarrow S^{1}$ is homotopic to $p_{n}(z)=z^{n}$ for a unique $n \in \mathbb{Z}$, so $\left[S^{1}, S^{1}\right] \simeq \mathbb{Z}$.
- There is a well-defined composition $[Y, Z] \times[X, Y] \rightarrow[X, Z]$ and thus a category h Top of spaces and homotopy classes of maps.
- Maps $X \xrightarrow{f} Y \xrightarrow{g} Z$ are homotopy inverse if $g f \simeq 1_{X}$ and $f g \simeq 1_{Y}$, i.e. $[g]$ is inverse to $[f]$ in hTop.
- Say $f: X \rightarrow Y$ is a homotopy equivalence if it has a homotopy inverse, i.e. it becomes an isomorphism in hTop.
- Say X and Y are homotopy equivalent if there is a homotopy equivalence $f: X \rightarrow Y$, i.e. $X \simeq Y$ in hTop.
- Example: define $S^{n-1} \xrightarrow{i} \mathbb{R}^{n} \backslash\{0\} \xrightarrow{p} S^{n-1}$ by $i(x)=x$ and $r(y)=y /\|y\|$. Define $F:[0,1] \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \mathbb{R}^{n} \backslash\{0\}$ by $F(t, y)=\|y\|^{-t} y$. Then $p i=1$ and $F: 1 \simeq i p$ so i and p are mutually inverse homotopy equivalences, and S^{n-1} and $\mathbb{R}^{n} \backslash\{0\}$ are homotopy equivalent spaces.
- A homotopy between continuous maps $f_{0}, f_{1}: X \rightarrow Y$ is a continuous map $F:[0,1] \times X \rightarrow Y$ with $F(0, x)=f_{0}(x)$ and $F(1, x)=f_{1}(x)$ for all $x \in X$.
- We say that f_{0} and f_{1} are homotopic if such a homotopy exists.
- Exercise: this is an equivalence relation (written $f_{0} \simeq f_{1}$). Key point: given homotopies $F_{0}: f_{0} \simeq f_{1}$ and $F_{1}: f_{1} \simeq f_{2}$ we can put

$$
F(t, x)= \begin{cases}F_{0}(2 t, x) & \text { if } 0 \leq t \leq \frac{1}{2} \\ F_{1}(2 t-1, x) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

- Example: we can define $f: S^{n} \rightarrow S^{n}$ by $f(x)=-x$. If $n=2 m-1$ then $S^{n}=\left\{z \in \mathbb{C}^{m} \mid\|z\|=1\right\}$ and we can define $F: 1_{S^{n}} \simeq f$ by $F(t, z)=e^{\pi i t} z$.
If n is even then cohomology shows that $1_{S^{n}} \not 千 f$.
- We can define $p_{n}: S^{1}=\{z \in \mathbb{C}| | z \mid=1\} \rightarrow S^{1}$ by $p_{n}(z)=z^{n}$. Fact: any $f: S^{1} \rightarrow S^{1}$ is homotopic to p_{n} for a unique n.
- $F(t, x)=(1-t) f_{0}(x)+t f_{1}(x)$ gives a linear homotopy $f_{0} \simeq f_{1}$ only if $Y \subseteq \mathbb{R}^{N}$ and the line segment from $f_{0}(x)$ to $f_{1}(x)$ is always contained in Y.
- Say $Y \subseteq \mathbb{R}^{N}$ is convex if $Y \neq \emptyset$ and every segment with endpoints in Y is contained in Y. If so, all maps $X \rightarrow Y$ are homotopic.

Contractible spaces

- Say X is contractible iff it is homotopy equivalent to $1=\{0\}$.
- Exercise: X is contractible iff $X \neq \emptyset$ and $1: X \rightarrow X$ is homotopic to a constant map.
- Exercise: any contractible space is path-connected.
- Example: any convex subset of \mathbb{R}^{N} is contractible, and any space homeomorphic to a contractible space is contractible.

contractible, but not convex

not contractible
- The following spaces are convex and so contractible: $\mathbb{R}^{n}, B^{n}, \Delta^{n},[0,1]^{n}$.
- Slogan: in homotopy theory, a contractible space of choices is as good as a unique choice.
- Let $\phi, \phi^{\prime}: U^{*} \rightarrow V^{*}$ be cochain maps. A chain homotopy from ϕ to ϕ^{\prime} is a system of homomorphisms $\sigma: U^{n} \rightarrow V^{n-1}$ with $d \sigma+\sigma d=\phi^{\prime}-\phi$. We say that ϕ and ϕ^{\prime} are chain homotopic if such a chain homotopy exists.
- Exercise: this is an equivalence relation (written $\phi \simeq \phi^{\prime}$).
- Exercise: this relation is compatible with composition: If $U^{*} \xrightarrow{\phi, \phi^{\prime}} V^{*} \xrightarrow{\psi, \psi^{\prime}} W^{*}$ and $\sigma: \phi \simeq \phi^{\prime}$ and $\tau: \psi \simeq \psi^{\prime}$ then $\psi \sigma+\tau \phi^{\prime}: \psi \phi \simeq \psi^{\prime} \phi^{\prime}$.
- Claim: if $\sigma: \phi \simeq \phi^{\prime}$ then $H^{*}(\phi)=H^{*}\left(\phi^{\prime}\right): H^{*}\left(U^{*}\right) \rightarrow H^{*}\left(V^{*}\right)$.
- Proof: consider an element $z \in Z^{n}\left(U^{*}\right)($ so $d(z)=0)$. Then $H^{n}\left(\phi^{\prime}\right)([z])-H^{n}(\phi)([z])=\left[\phi^{\prime}(z)\right]-[\phi(z)]=\left[\left(\phi^{\prime}-\phi\right)(z)\right]=$ $[d(\sigma(z))+\sigma(d(z))]=[d(\cdot)+0]=0$.
- Proposition: a topological homotopy $F:[0,1] \times X \rightarrow Y$ from f_{0} to f_{1} gives a chain homotopy between $f_{0}^{*}, f_{1}^{*}: C^{*}(Y) \rightarrow C^{*}(X)$, so $f_{0}^{*}=f_{1}^{*}: H^{*}(Y) \rightarrow H^{*}(X)$.
- Core of proof: divide $[0,1] \times \Delta^{n}$ into copies of Δ^{n+1}, and think about the boundary of this space.
- Corollary: if X is homotopy equivalent to Y, then $H^{*}(X) \simeq H^{*}(Y)$.
- Example: if X is contractible then $H^{n}(X)=0$ except $H^{0}(X)=\mathbb{Z}$.

Exact sequences

- A sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is exact if $\operatorname{img}(\alpha)=\operatorname{ker}(\beta)$ (implies $\beta \alpha=0$)
- The sequence is short exact if also α is injective and β is surjective.
- $A \xrightarrow{\alpha} B \xrightarrow{0} C$ is exact iff α is surjective; so $A \xrightarrow{\alpha} B \rightarrow 0$ is exact iff α is surjective.
- $A \xrightarrow{0} B \xrightarrow{\beta} C$ is exact iff β is injective; so $0 \rightarrow B \xrightarrow{\beta} C$ is exact iff β is injective.
- $A \xrightarrow{0} B \xrightarrow{\beta} C \xrightarrow{0} D$ is exact iff β is an isomorphism; so $0 \rightarrow B \xrightarrow{\beta} C \rightarrow 0$ is exact iff β is an isomorphism.
- $A \xrightarrow{0} B \xrightarrow{0} C$ is exact iff $B=0$; so $0 \rightarrow B \rightarrow 0$ is exact iff $B=0$.
- A cochain complex $U^{*}=\left(\cdots \rightarrow U^{-2} \rightarrow U^{-1} \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots\right)$ is exact iff $H^{*}\left(U^{*}\right)=0$.
- Split short exact sequence:
$A \xrightarrow{i} A \oplus B \xrightarrow{p} B$ with $i(a)=(a, 0)$ and $p(a, b)=b$.
- There is a short exact sequence $\mathbb{Z} / n \xrightarrow{i} \mathbb{Z} / n m \xrightarrow{p} \mathbb{Z} / m$
with $i(a(\bmod n))=a m(\bmod n m)$ and $p(a(\bmod n m))=a(\bmod m)$. This is split iff n and m are coprime.
- For $N \leq M, N \xrightarrow{\text { inc }} M \xrightarrow{\text { proj }} M / N$ is short exact.
- If $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is short exact then $A \simeq \alpha(A) \leq B$ and $B / \alpha(A) \simeq C$ so $|B|=|A||B|$.
- Consider a space X with open subsets $U, V \subseteq X$.
- How are $H^{*}(U), H^{*}(V), H^{*}(U \cup V)$ and $H^{*}(U \cap V)$ related?

$H^{n-1}(U \cap V) \xrightarrow{\delta} H^{n}(U \cup V) \xrightarrow{\left[\begin{array}{c}k^{*} \\ i^{*}\end{array}\right]} H^{n}(U) \times H^{n}(V) \xrightarrow{\left[i^{*}-j^{*}\right]} H^{n}(U \cap V) \xrightarrow{\delta} H^{n+1}(U \cup V)$
There is a non-obvious map δ extending the diagram as shown,
and this makes the sequence exact,
i.e. the image of each map is the kernel of the next.

Also: we have a ring map $\alpha=(k i)^{*}=(l)^{*}: H^{*}(U \cup V) \rightarrow H^{*}(U \cap V)$, and $\delta(\alpha(a) b)=(-1)^{n} a \delta(b)$ for $a \in H^{n}(U \cup V)$ and $b \in H^{m}(U \cap V)$.

The Snake Lemma

- Let $U^{*} \xrightarrow{i} V^{*} \xrightarrow{p} W^{*}$ be a SES of cochain complexes and chain maps (so $d^{2}=0 ; d i=i d$ and $d p=p d ; \operatorname{img}(i)=\operatorname{ker}(p) ; i$ injective, p surjective)
- Claim: there are maps $\delta: H^{n}\left(W^{*}\right) \rightarrow H^{n+1}\left(U^{*}\right)$ giving an exact sequence

$$
\cdots \rightarrow H^{n-1}\left(W^{*}\right) \xrightarrow{\delta} H^{n}\left(U^{*}\right) \xrightarrow{i_{*}} H^{n}\left(V^{*}\right) \xrightarrow{p_{*}} H^{n}\left(W^{*}\right) \xrightarrow{\delta} H^{n+1}\left(U^{*}\right) \rightarrow \cdots
$$

\Rightarrow Idea: $\delta=i^{-1} d p^{-1}=\left(H^{n}\left(W^{*}\right) \stackrel{p^{-1}}{>} V^{n} \xrightarrow{d} V^{n+1} \stackrel{i}{ }^{-1}>H^{n+1}\left(U^{*}\right)\right)$

- Definition: a snake is (c, w, v, u, a) where
(1) $c \in H^{n}\left(W^{*}\right) ;(2) w \in Z^{n}\left(W^{*}\right)$ with $c=[w]$;
(3) $v \in V^{n}$ with $p(v)=w$; (4) $u \in Z^{n+1}\left(U^{*}\right)$ with $i(u)=d(v)$;
(5) $a=[u] \in H^{n+1}\left(U^{*}\right)$.
- Idea: v is a choice of $p^{-1}(c)$, a is a choice of $i^{-1}(d(v))=i^{-1}\left(d\left(p^{-1}(c)\right)\right)$.
- Claim: for $c \in H^{n}\left(W^{*}\right)$, there is a snake (c, w, v, u, a) starting with c. Any two choices have the same a so we can define $\delta(c)=$ a giving $\delta: H^{n}\left(W^{*}\right) \rightarrow H^{n+1}\left(U^{*}\right)$.
- Proof: By definition of $H^{n}\left(W^{*}\right)$ there exists w as in (2). As p is surjective there exists v as in (3). Now $p(d(v))=d(p(v))=d(w)=0$ so $d(v) \in \operatorname{ker}(p)=\operatorname{img}(i)$ so there exists $u \in U^{n+1}$ with $i(u)=d(v)$. Also $i(d(u))=d(i(u))=d^{2}(v)=0$ but i is injective so $d(u)=0$ so u is as in (4). We define $a=[u]$ so (5) holds. Uniqueness is similar.
- Let $U^{*} \xrightarrow{i} V^{*} \xrightarrow{p} W^{*}$ be a SES of cochain complexes and chain maps
- $\delta: H^{n}\left(W^{*}\right) \rightarrow H^{n+1}\left(U^{*}\right)$ with $\delta(c)=a$ iff there is a snake (c, w, v, u, a) i.e. (1) $c \in H^{n}\left(W^{*}\right) ;(2) w \in Z^{n}\left(W^{*}\right)$ with $c=[w]$;
(3) $v \in V^{n}$ with $p(v)=w$; (4) $u \in Z^{n+1}\left(U^{*}\right)$ with $i(u)=d(v)$; (5) $a=[u] \in H^{n+1}\left(U^{*}\right)$.
- Claim: the following sequence is exact:
$\cdots \rightarrow H^{n-1}\left(W^{*}\right) \xrightarrow{\delta} H^{n}\left(U^{*}\right) \xrightarrow{i_{*}} H^{n}\left(V^{*}\right) \xrightarrow{p_{*}} H^{n}\left(W^{*}\right) \xrightarrow{\delta} H^{n+1}\left(U^{*}\right) \rightarrow \cdots$
i.e. $i_{*} \delta=0, p_{*} i_{*}=0, \delta p_{*}=0$,
$\operatorname{ker}\left(i_{*}\right) \leq \operatorname{img}(\delta), \operatorname{ker}\left(p_{*}\right) \leq \operatorname{img}\left(i_{*}\right), \operatorname{ker}(\delta) \leq \operatorname{img}\left(p_{*}\right)$.
- For $i_{*} \delta=0: i_{*}(\delta(c))=i_{*}([u])=[i(u)]=[d(v)]=0$.
\rightarrow For $p_{*} i_{*}=0: p_{*}\left(i_{*}([u])\right)=p_{*}([i(u)])=[p(i(0))]=[0]=0$.
- For $\delta p_{*}=0$: if $v \in Z^{n}\left(V^{*}\right)$ then $d(v)=0=i(0)$ so we have a snake $\left(p_{*}([v]), p(v), v, 0,0\right)$.
- For $\operatorname{ker}\left(i_{*}\right) \leq \operatorname{img}(\delta)$: suppose $u \in Z^{n}\left(U^{*}\right)$ with $i_{*}([u])=0$. Then $[i(u)]=0$ so $i(u)=d(v)$ for some $v \in V^{n-1}$. Then $d(p(v))=p(d(v))=p(i(u))=0$ so we have a snake $([p(v)], p(v), v, u,[u])$ giving $[u]=\delta([p(v)]) \in \operatorname{img}(\delta)$.
- The rest is similar.

The Mayer-Vietoris Sequence

- Suppose $U \xrightarrow{i} X \underset{\leftarrow}{\leftarrow} V$ are inclusions of open sets with $X=U \cup V$.
- Put $A^{*}=C^{*}(X)$ and $C_{\text {small }}^{*}(X)=A^{*} / K^{*}$ where $K^{*}=I^{*} \cap J^{*}=\operatorname{ker}\left(i^{*}\right) \cap \operatorname{ker}\left(j^{*}\right)=C_{\text {big }}^{*}(X)$.
- The short exact sequence $K^{*} \rightarrow A^{*} \rightarrow A^{*} / K^{*}$ gives an exact sequence

$$
H^{n}\left(K^{*}\right) \rightarrow H^{n}\left(A^{*}\right)=H^{n}(X) \rightarrow H^{n}\left(A^{*} / K^{*}\right)=H_{\text {small }}^{n}(X) \xrightarrow{\delta} H^{n+1}\left(K^{*}\right)
$$

- Claim: $H^{*}\left(K^{*}\right)=0$. Given this, the above gives $H^{*}(X)=H_{\text {small }}^{*}(X)$ so we have the Mayer-Vietoris sequence as originally stated.
- Why is $H^{*}\left(K^{*}\right)=0$? First $K^{0}=0$ so $H^{0}\left(K^{*}\right)=0$ and $H^{1}\left(K^{*}\right)=Z^{1}\left(K^{*}\right)$.
- Consider a path $u:[0,1]=\Delta^{1} \rightarrow X$ and let u_{0}, u_{1} be the first and second halves. Define $p: \Delta^{2} \rightarrow \Delta^{1}$ by $p\left(t_{0}, t_{1}, t_{2}\right)=\left(t_{0}+t_{1} / 2, t_{1} / 2+t_{2}\right)$. If $f \in Z^{1}\left(K^{*}\right)$ then using $(d f)(u \circ p)=0$ we get $f(u)=f\left(u_{0}\right)+f\left(u_{1}\right)$. Repeat: $f(u)$ is a sum of 2^{N} terms, each f applied to a small piece of u Eventually all the pieces lie in U or in V, so $f(u)=0$.
- To prove $H^{n}\left(K^{*}\right)=0$ in general, we need to subdivide Δ^{n} into smaller copies of Δ^{n} and also define a map $\Delta^{n+1} \rightarrow \Delta^{n}$ analogous to p. This can be done by explicit combinatorics or by a more abstract method ("acyclic models").
- Suppose $U \xrightarrow{i} X \stackrel{j}{\leftarrow} V$ are inclusions of open sets with $X=U \cup V$.

$$
\begin{aligned}
S_{n}^{0}(X) & =\left\{u: \Delta^{n} \rightarrow X \mid u\left(\Delta^{n}\right) \subseteq U \cap V\right\} \\
S_{n}^{1}(X) & =\left\{u: \Delta^{n} \rightarrow X \mid u\left(\Delta^{n}\right) \subseteq U, u\left(\Delta^{n}\right) \nsubseteq V\right\} \\
S_{n}^{2}(X) & =\left\{u: \Delta^{n} \rightarrow X \mid u\left(\Delta^{n}\right) \nsubseteq U, u\left(\Delta^{n}\right) \subseteq V\right\} \\
S_{n}^{3}(X) & =\left\{u: \Delta^{n} \rightarrow X \mid u\left(\Delta^{n}\right) \nsubseteq U, u\left(\Delta^{n}\right) \nsubseteq V\right\}=\{\text { large } n \text {-simplices }\} \\
A_{n}^{k} & =\operatorname{Map}\left(S_{n}^{k}, \mathbb{Z}\right) \\
C^{*}(X) & =A_{0}^{*} \times A_{1}^{*} \times A_{2}^{*} \times A_{3}^{*}=: A^{*} \\
C^{*}(U) & =A_{0}^{*} \times A_{1}^{*}=A^{*} / I^{*} \text { where } I^{*}=A_{2}^{*} \times A_{3}^{*} \\
C^{*}(V) & =A_{0}^{*} \times A_{2}^{*}=A^{*} / J^{*} \text { where } J^{*}=A_{1}^{*} \times A_{3}^{*} \\
C^{*}(U \cap V) & =A_{0}^{*}=A^{*} /\left(I^{*}+J^{*}\right) \\
C_{\text {small }}^{*}(X) & =A_{0}^{*} \times A_{1}^{*} \times A_{2}^{*}=A^{*} /\left(I^{*} \cap J^{*}\right)
\end{aligned}
$$

- We have a short exact sequence

$$
C_{\text {small }}^{*}(X) \xrightarrow{\left[k_{i^{*}}^{*}\right]} C^{*}(U) \times C^{*}(V) \xrightarrow{\left[i^{*}-j^{*}\right]} C^{*}(U \cap V)
$$

giving a Mayer-Vietoris type sequence

$$
\cdots \rightarrow H^{n-1}(U \cap V) \rightarrow H_{\text {small }}^{n}(X) \rightarrow H^{n}(U) \times H^{n}(V) \rightarrow H^{n}(U \cap V) \rightarrow H_{\mathrm{small}}^{n+1}(X) \rightarrow \cdots
$$

Cohomology of spheres

- Claim: For $n \geq 0$ there is an element $u_{n} \in H^{n}\left(S^{n}\right)$ such that $H^{*}\left(S^{n}\right)=\mathbb{Z} \oplus \mathbb{Z} u_{n}$.
- For $n=0$: the space $S^{0}=\{1,-1\}$ is discrete, so $H^{n}\left(S^{0}\right)=0$ for $n \neq 0$ and $H^{0}\left(S^{0}\right)=\operatorname{Map}\left(S^{0}, \mathbb{Z}\right)$. We put $u_{0}(1)=01$ and $u_{0}(-1)=1$ so $H^{0}\left(S^{0}\right)=\mathbb{Z} \oplus \mathbb{Z} u_{0}$.
- For $n>0$, we put $N=(0, \ldots, 0,1) \in S^{n}$ and $U=S^{n} \backslash\{-N\}$ and $V=S^{n} \backslash\{N\}$ so $S^{n}=U \cup V$.
- For $(x, t) \in U \cap V=S^{n} \backslash\{N,-N\}$ we have $\|x\|^{2}+t^{2}=1$ with $|t|<1$ so $x \neq 0$; so we can define $r: U \cap V \rightarrow S^{n-1}$ by $r(x, t)=x /\|x\|$.
- We also have $\delta: H^{n-1}(U \cap V) \rightarrow H^{n}\left(S^{n}\right)$ and we put $u_{n}=\delta\left(r^{*}\left(u_{n-1}\right)\right)$.
- Stereographic projection: $U \simeq V \simeq \mathbb{R}^{n}$ (contractible) so $H^{0}(U)=H^{0}(V)=\mathbb{Z}$ but $H^{n}(U)=H^{n}(V)=0$ otherwise.
- $i: S^{n-1} \rightarrow U \cap V$ by $i(x)=(x, 0)$ has $r i=1$ and $h: i r \simeq 1$ by $h(s,(x, t))=(x, s t) /\|(x, s t)\|$. Thus $H^{*}(U \cap V) \simeq H^{*}\left(S^{n-1}\right)=\mathbb{Z} \oplus \mathbb{Z} u_{n-1}$.

- $\alpha(n)=(n, n)$ and $\beta(p, q)=(q-p) .1$.
- It follows that $H^{0}\left(S^{1}\right)=\mathbb{Z}$ and $H^{1}\left(S^{1}\right)=\mathbb{Z} u_{1}$ and $H^{n}\left(S^{1}\right)=0$ otherwise,

Distinguishing spheres and euclidean spaces

- We proved: $H^{*}\left(S^{n}\right)=\mathbb{Z} \oplus \mathbb{Z} u_{n}$ with $u_{n} \in H^{n}\left(S^{n}\right)$.
- Thus: if $n \neq m$ then $\boldsymbol{H}^{*}\left(S^{n}\right) \not \not ㇒ H^{*}\left(S^{m}\right)$ as graded rings so S^{n} is not homotopy equivalent to S^{m}.
- Recall that $\mathbb{R}^{n+1} \backslash\{0\}$ is homotopy equivalent to S^{n}.

Thus, if $n \neq m$ then $\mathbb{R}^{n+1} \backslash\{0\}$ is not homotopy equivalent to $\mathbb{R}^{m+1} \backslash\{0\}$

- Also $\mathbb{R}^{0} \backslash\{0\}=\emptyset$,
so if $p \neq q$ then $\mathbb{R}^{p} \backslash\{0\}$ is not homotopy equivalent to $\mathbb{R}^{q} \backslash\{0\}$.
- Given a homeomorphism $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$, we can define $g(x)=f(x)-f(0)$ with $g^{-1}(y)=f^{-1}(y+f(0))$; this gives another homeomorphism with $g(0)=0$. This in turn gives a homeomorphism $\mathbb{R}^{p} \backslash\{0\} \rightarrow \mathbb{R}^{q} \backslash\{0\}$ so $p=q$.
- Conclusion: if $p \neq q$ then \mathbb{R}^{p} is not homeomorphic to \mathbb{R}^{q}.
- This is very easy to believe but very hard to prove without cohomology.

- $\alpha(n)=(n, n)$ and $\beta(p, q)=(q-p) .1$.
- It follows that $H^{0}\left(S^{2}\right)=\mathbb{Z}$ and $H^{2}\left(S^{2}\right)=\mathbb{Z} u_{2}$ and $H^{n}\left(S^{2}\right)=0$ otherwise, as claimed.

The Brouwer fixed point theorem

- Lemma: if $i: S^{n-1} \rightarrow B^{n}$ is the inclusion then there is no continuous map $r: B^{n} \rightarrow S^{n-1}$ with $r i=1: S^{n-1} \rightarrow S^{n-1}$.
- Proof: Cases $n=0,1$ (with $S^{-1}=\emptyset$) are easy so take $n>1$.
- If $r i=1$ then the composite

$$
\mathbb{Z}=H^{n-1}\left(S^{n-1}\right) \xrightarrow{i^{*}} H^{n-1}\left(B^{n}\right)=0 \xrightarrow{r^{*}} H^{n-1}\left(S^{n-1}=\mathbb{Z}\right.
$$

is the identity, but that is impossible. \square

- Theorem (Brouwer): if $f: B^{n} \rightarrow B^{n}$ is continuous, then there exists $x \in B^{n}$ with $f(x)=x$.
- Proof: suppose not. Then for each x we can draw a line from $f(x)$ to x and extend it until we hit the boundary at a point $r(x) \in S^{n-1}$.

- If $x \in S^{n-1}$ we just have $r(x)=x$.

One can check that r is continuous, so this contradicts the lemma. \square

Suppose we have two spaces X and Y, and thus projections $X \stackrel{p}{\leftarrow} X \times Y \xrightarrow{q} Y$ Given $a \in H^{r}(X)$ and $b \in H^{s}(Y)$ we define $a \times b=p^{*}(a) q^{*}(b) \in H^{r+s}(X \times Y)$ this is called the external product of a and b.

This construction gives a map $\mu: H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)$, with $\mu(a \otimes b)=a \times b$.

Here $M \otimes N \simeq N \otimes M ; \quad(L \oplus M) \otimes N \simeq(L \otimes N) \oplus(M \otimes N) ; \quad \mathbb{Z} \otimes M \simeq M ;$ $(\mathbb{Z} / r) \otimes M=M / r M ; \quad \mathbb{Z}^{n} \otimes \mathbb{Z}^{m} \simeq \mathbb{Z}^{n m} ; \quad \mathbb{Z} / r \otimes \mathbb{Z} / s \simeq \mathbb{Z} / \operatorname{gcd}(r, s)$

The map μ is an isomorphism if each group $H^{r}(X)$ is free and finitely generated (this is a special case of the Künneth theorem).

Now consider the inclusions $X \xrightarrow{i} X \amalg Y \stackrel{j}{\leftarrow} Y$ and the resulting map $H^{*}(X \amalg Y) \rightarrow H^{*}(X) \times H^{*}(Y)$, given by $a \mapsto\left(i^{*}(a), j^{*}(a)\right)$. This is easily seen to be an isomorphism.

Open subsets of \mathbb{R}^{n}

Example
Let U be the open ball of radius $\epsilon>0$ around a point $x \in \mathbb{R}^{n}$. Then there is a homeomorphism $f: U \rightarrow \mathbb{R}^{n}$:

$$
f(y)=\frac{y-x}{1-\|y-x\|^{2} / \epsilon^{2}} \quad f^{-1}(z)=x+\frac{\sqrt{\epsilon^{2}+4\|z\|^{2}}-\epsilon}{2\|z\|^{2}} \epsilon z
$$

It follows that any open subspace of \mathbb{R}^{n} is an n-dimensional topological manifold.
An interesting special case is

$$
F_{n} \mathbb{C}:=\left\{z \in \mathbb{C}^{n} \mid z_{i} \neq z_{j} \text { when } i \neq j\right\} .
$$

This can be viewed as an open subspace of $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$; we will study its cohomology later.

Definition
A topological manifold of dimension n is a second countable, Hausdorff topological space M such that each point $x \in M$ has an open neighbourhood $U \subseteq M$ such that U is homeomorphic to \mathbb{R}^{n}.

The space on the left is a manifold of dimension 2; the one on the right is not.

Vector spaces

Convention

Many examples below will involve vector spaces. Everywhere in these notes, vector spaces are assumed finite dimensional unless otherwise specified, and the scalar field is \mathbb{R} unless otherwise specified.

Example
Let V be a vector space of dimension n. There is a natural topology on V (the smallest one for which all linear maps $V \rightarrow \mathbb{R}$ are continuous) and with this topology V is homeomorphic to \mathbb{R}^{n}. Thus V is a topological manifold.

Example

Now suppose that V is equipped with an inner product, and define the sphere $S(V)$ as $\{x \in V \mid\|x\|=1\}$.
For $x \in S(V)$ put $U_{x}=\{y \in S(V) \mid\langle x, y\rangle>0\}$ and $V_{x}=\{z \mid\langle x, z\rangle=0\}$.
Define $f_{x}: V_{x} \rightarrow U_{x}$ by $f_{x}(z)=(x+z) / \sqrt{1+z^{2}}$.

One can check that this is a homeomorphism, and also V_{x} is a vector space of dimension $n-1$ so it is homeomorphic to \mathbb{R}^{n-1}. It follows that $S(V)$ is a manifold of dimension $n-1$. It is easy to see that it is compact.

Some projective varieties

Suppose that $m \leq n$. The Milnor hypersurface in $\mathbb{C} P^{m} \times \mathbb{C} P^{n}$ is the space

$$
H_{m, n}=\left\{([z],[w]) \in \mathbb{C} P^{m} \times \mathbb{C} P^{n} \mid \sum_{i=0}^{m} z_{i} w_{i}=0\right\} .
$$

Suppose that $d>2$. The Fermat hypersurface of degree d in $\mathbb{C} P^{m}$ is

$$
X_{d, m}=\left\{[z] \in \mathbb{C} P^{m} \mid \sum_{i=0}^{m} z_{i}^{d}=0\right\} .
$$

Consider the space

$$
C=\left\{[x: y: z] \in \mathbb{C} P^{2} \mid y^{2} z=x(x-z)(x+z)\right\}
$$

This is an example of an elliptic curve. It is homeomorphic to the torus $S^{1} \times S^{1}$.

Let V have dimension m over \mathbb{C}. Put $P V=\{$ lines in $V\}$.
Define $q: V^{\times}=V \backslash\{0\} \rightarrow P V$ by $q(x)=[x]=\mathbb{C} x$. This is surjective, and we give $P V$ the quotient topology. Claim: this makes $P V$ a topological manifold. Indeed, given a line $L \in P V$ choose W with $V=L \oplus W$, and put
$U=\{M \in P V \mid M \cap W=0\}$. Then U is an open neighbourhood of L in $P V$. We can define $f=f_{L, w}: \operatorname{Hom}(L, W) \rightarrow P V$ by

$$
f(\alpha)=\operatorname{graph}(\alpha: L \rightarrow W)=(1+\alpha)(L) \leq L+W=V
$$

One can check that this gives a homeomorphism from
$\operatorname{Hom}(L, W) \simeq \mathbb{C}^{n-1} \simeq \mathbb{R}^{2 n-2}$ to U, so U is a chart domain around L. For $V=\mathbb{C}^{m+1}: P V=\mathbb{C} P^{m},\left[z_{0}: \cdots: z_{m}\right]=\mathbb{C} .\left(z_{0}, \ldots, z_{m}\right)$

Grassmannians and flag varieties

Let $G_{k}(V)$ be the set of k-dimensional subspaces of $V \simeq \mathbb{C}^{d}$.
(So $P V=G_{1}(V)$.)
This is again a compact manifold, of dimension $2 k(d-k)$.
Indeed, given $A \in G_{k}(V)$ we can choose a subspace $B \in G_{d-k}(V)$ with $V=A \oplus B$. We find that the set $U=\left\{A^{\prime} \in G_{k}(V) \mid A^{\prime} \cap B=0\right\}$ is an open neighbourhood of A, and that we have a homeomorphism $\operatorname{Hom}(A, B) \rightarrow U$ given by $\alpha \mapsto \operatorname{graph}(\alpha)=(1+\alpha)(A)$.

A complete flag in V is a sequence of complex subspaces
$0=W_{0}<W_{1}<\ldots<W_{d}=V$ such that $\operatorname{dim}\left(W_{k}\right)=k$ for all k. The space of complete flags is written $\operatorname{Flag}(V)$; it is again a compact manifold, of dimension $d^{2}-d$.

A flag W in $V=\mathbb{C}^{d}$ is bounded if $W_{k} \leq \mathbb{C}^{k+1}$ for all k. The set B_{d} of bounded flags is a manifold of dimension $2 d-2$. It is an example of a toric variety: there is an action of the group $\left(\mathbb{C}^{\times}\right)^{d-1}$ that is nearly free and nearly transitive.

Let V be a complex vector space of dimension d.
Suppose we have a Hermitian inner product (so that $\langle u, v\rangle=\langle v, u\rangle$ and $z\langle u, v\rangle=\langle z u, v\rangle=\langle u, \bar{z} v\rangle$ when $z \in \mathbb{C}$ and $u, v \in V)$.
Any endomorphism α of V has an adjoint α^{\dagger}, with $\langle\alpha(u), v\rangle=\left\langle u, \alpha^{\dagger}(v)\right\rangle$. Put

$$
\begin{aligned}
& U(V)=\left\{\alpha \in \operatorname{Aut}(V) \mid \alpha^{\dagger}=\alpha^{-1}\right\}=\text { the unitary group of } V . \\
& \mathfrak{u}(V)=\left\{\beta \in \operatorname{End}(V) \mid \beta^{\dagger}=-\beta\right\} .
\end{aligned}
$$

After choosing an orthonormal basis for V, it is not hard to check that $\mathfrak{u}(V)$ is a real vector space of dimension d^{2}.
Also, if $\beta \in \mathfrak{u}(V)$ we see that the eigenvalues of β are purely imaginary, so that the maps $1 \pm \beta / 2$ are invertible. For any $\alpha \in U(V)$ we define
$f_{\alpha}: \mathfrak{u}(V) \rightarrow \operatorname{Aut}(V)$ by

$$
f_{\alpha}(\beta)=(1+\beta / 2)(1-\beta / 2)^{-1} \alpha .
$$

One checks that this gives a homeomorphism of $\mathfrak{u}(V)$ with a neighbourhood of α in $U(V)$. It follows that $U(V)$ is a topological manifold.

Now consider $C_{n}=\langle\omega\rangle<\mathbb{C}^{\times}$, where $\omega=e^{2 \pi i / n}$.
This acts by multiplication on $S(V) \simeq S\left(\mathbb{C}^{d}\right) \simeq S^{2 d-1}$, so we can put $L=S(V) / C_{n}$.
Claim: L is a manifold of dimension $2 d-1$.
To see this, let $\pi: S(V) \rightarrow S(V) / C_{n}$ be the projection map, and note that $\pi^{-1} \pi(U)=\bigcup_{k=0}^{d-1} \omega^{k} U$; this implies that π is an open map.
Next put $\epsilon=|\omega-1| / 2$, and for $v \in S(V)$ put
$N_{\epsilon}(v)=\{w \in S(V) \mid\|v-w\|<\epsilon\}$. One checks easily that
$\left\|\omega^{k} u-u\right\| \geq 2 \epsilon\|u\|$ and thus that $\pi: N_{\epsilon}(v) \rightarrow S(V) / C_{n}$ is injective.
It follows that $\pi: N_{\epsilon}(v) \rightarrow \pi N_{\epsilon}(v)$ is a homeomorphism and that the codomain is open in $S(V)$; this shows that $S(V) / C_{n}$ is a manifold.
We will see that $H^{2}\left(S(V) / C_{n}\right) \simeq \mathbb{Z} / n$. This is our first example where the cohomology is not a free abelian group.

Cohomology of punctured euclidean space

- Consider a list a_{1}, \ldots, a_{n} of distinct points in $\mathbb{R}^{d}($ with $d>1)$ and put $M=\mathbb{R}^{d} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$.
- Define $f_{i}: M \rightarrow S^{d-1}$ by $f_{i}(x)=\left(x-a_{i}\right) /\left\|x-a_{i}\right\|$ and put $v_{i}=f_{i}^{*}\left(u_{d-1}\right) \in H^{d-1}(M)$.
- As $u_{d-1}^{2}=0$ and f_{i}^{*} is a ring map we have $v_{i}^{2}=0$.
- Claim: we have $H^{0}(M)=\mathbb{Z}$ and $H^{d-1}(M)=\mathbb{Z}\left\{v_{1}, \ldots, v_{n}\right\}$ and $H^{k}(M)=0$ otherwise.
- For $n=0$ or $n=1$ we have seen this already.
- For $n>1$, put $A=\mathbb{R}^{d} \backslash\left\{a_{1}, \ldots, a_{n-1}\right\}$ and $B=\mathbb{R}^{d} \backslash\left\{a_{n}\right\}$ so $M=A \cap B$ and $A \cup B=V$ (contractible).
- We have a Mayer-Vietoris sequence

$$
0=H^{d-1}(V) \rightarrow H^{d-1}(A) \oplus H^{d-1}(B) \rightarrow H^{d-1}(M) \xrightarrow{\delta} H^{d}(V)=0
$$

$$
\text { so } H^{d-1}(M) \simeq H^{d-1}(A) \oplus H^{d-1}(B) \simeq H^{d-1}(A) \oplus \mathbb{Z} \cdot v_{n} .
$$

- A bit more work with the same Mayer-Vietoris sequence proves the full claim.
- In particular, $v_{i} v_{j}=0$ for all i and j (because $\left.H^{2 d-2}(M)=0\right)$.
- $F_{n} \mathbb{C}=\left\{z \in \mathbb{C}^{n} \mid z_{p} \neq z_{q}\right.$ for all $\left.p \neq q\right\}$.
- $f_{p q}: F_{n} \mathbb{C} \rightarrow S^{1}$ by $f_{p q}(z)=\left(z_{q}-z_{p}\right) /\left|z_{q}-z_{p}\right| ; a_{p q}=f_{p q}^{*}\left(u_{1}\right) \in H^{1}\left(F_{n} \mathbb{C}\right)$.
- Using $h(t, z)=e^{\pi i t} f_{p q}(z)$ we see that $f_{p q} \simeq f_{q p}$ and $a_{q p}=a_{p q}$.
- As $f_{p q}^{*}$ is a ring map and $u_{1}^{2}=0$ we get $a_{p q}^{2}=0$.
- Define $g: F_{3} \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}^{\times} \times(\mathbb{C} \backslash\{0,1\})$ by $g(z)=\left(z_{0}, z_{1}-z_{0}, \frac{z_{2}-z_{0}}{z_{1}-z_{0}}\right)$. This is a homeomorphism, with $g^{-1}(u, v, w)=(u, u+v, u+v w)$.
- Here $H^{*}(\mathbb{C})=\mathbb{Z}, H^{*}\left(\mathbb{C}^{\times}\right)=\mathbb{Z}[u] / u^{2}$ and $H^{*}(\mathbb{C} \backslash\{0,1\})=\mathbb{Z}\left[v_{1}, v_{2}\right] /\left(v_{1}^{2}, v_{1} v_{2}, v_{2}^{2}\right)$.
- Thus, Künneth gives $H^{*}\left(F_{3} \mathbb{C}\right)=H^{*}(\mathbb{C}) \otimes H^{*}\left(\mathbb{C}^{\times}\right) \otimes H^{*}(\mathbb{C} \backslash\{0,1\})=$ $\mathbb{Z}\left[u, v_{0}, v_{1}\right] /\left(u^{2}, v_{1}^{2}, v_{1} v_{2}, v_{2}^{2}\right)=\mathbb{Z}\left\{1, u, v_{0}, v_{1}, u v_{0}, u v_{1}\right\}$.
- One checks that $a_{01}=a_{10}=u$ and $a_{02}=a_{20}=u+v_{0}$ and $a_{12}=a_{21}=u+v_{1}$. It follows that
$a_{01} a_{12}+a_{12} a_{20}+a_{20} a_{01}=u\left(u+v_{1}\right)+\left(u+v_{1}\right)\left(u+v_{0}\right)+\left(u+v_{0}\right) u=$ $3 u^{2}+u v_{1}+v_{1} u+u v_{0}+v_{0} u=0$
- More generally, given distinct i, j, k we define $q: F_{n} \mathbb{C} \rightarrow F_{3} \mathbb{C}$ by $q(z)=\left(z_{i}, z_{j}, z_{k}\right)$, so $q^{*} a_{01}=a_{i j}$ and $q^{*} a_{12}=a_{j k}$ and $q^{*} a_{20}=a_{k i}$
- By applying q^{*} to our relation in $H^{*}\left(F_{3} \mathbb{C}\right)$ we get $a_{i j} a_{j k}+a_{j k} a_{k i}+a_{k i} a_{i j}=0$ in $H^{*}\left(F_{n} \mathbb{C}\right)$.
- Thus all the claimed relations are valid in $H^{*}\left(F_{n} \mathbb{C}\right)$; we still need to check that there are no additional generators or relations.
- Consider a continuous map $p: E \rightarrow B$
with fibres $F_{b}=p^{-1}\{b\}$ for $b \in B$ and inclusions $i_{b}: F_{b} \rightarrow E$.
- Suppose we have a basis x_{1}, \ldots, x_{n} for $H^{*}(B)$, and elements $y_{1}, \ldots, y_{m} \in H^{*}(E)$ such that $i_{b}^{*}\left(y_{1}\right), \ldots, i_{b}^{*}\left(y_{m}\right)$ is always a basis for $H^{*}\left(F_{b}\right)$.
- Expectation: $p^{*}\left(x_{1}\right) y_{1}, \ldots, p^{*}\left(x_{n}\right) y_{m}$ should be a basis for $H^{*}(E)$.
- If $p=(B \times F \xrightarrow{\text { proj }} B)$ then this follows from the Künneth Theorem.
- More generally, it works for fibre bundles.
- Say $U \subseteq X$ is even if $\left(p^{-1}(U) \xrightarrow{p} U\right)$ is like $(U \times F \xrightarrow{\text { proj }} U)$.
- Say p is a fibre bundle if B can be covered by even open sets.
- Define $\phi_{U}: A(U)^{*}=\bigoplus_{i=1}^{m} H^{*-\left|y_{i}\right|}(U) \rightarrow B(U)^{*}=H^{*}\left(p^{-1}(U)\right)$ by $\phi_{U}\left(a_{1}, \ldots, a_{m}\right)=\sum_{i} p^{*}\left(a_{i}\right) y_{i}$.
- If U is even then ϕ_{U} is an isomorphism by Künneth
- Claim: if U is even and ϕ_{V} is an isomorphism then so is $\phi_{U \cup V}$.
- If B is compact then $B=U_{1} \cup \cdots \cup U_{p}$ with U_{i} even and we conclude that ϕ_{B} is an isomorphism.
- This also works if B is not compact, by a limit argument.

The induction step

$E \xrightarrow{p} B \quad y_{j} \in H^{*}(E) \quad A^{k}(U)=\oplus_{j} H^{k-\left|y_{j}\right|}(U) \xrightarrow{\phi U} B^{k}(U)=H^{*}\left(p^{-1}(U)\right)$ For each $b \in B$, the elements $i_{b}^{*}\left(y_{j}\right)$ give a basis of $H^{*}\left(F_{b}\right)$.

- For open sets $U, V \subseteq B$ we have Mayer-Vietoris sequences for (U, V) and for $\left(p^{-1}(U), p^{-1}(V)\right)$ giving a diagram as follows:

$$
\begin{aligned}
& A^{k-1} U \times A^{k-1} v \longrightarrow A^{k-1}(U \cap V) \longrightarrow A^{k}(U \cup V) \longrightarrow A^{k} U \times A^{k} V \longrightarrow A^{k}(U \cap V)
\end{aligned}
$$

$$
\begin{aligned}
& B^{k-1} U \times B^{k-1} V \longrightarrow B^{k-1}(U \cap V) \longrightarrow B^{k}(U \cup V) \longrightarrow B^{k} U \times B^{k} V \longrightarrow B^{k}(U \cap V)
\end{aligned}
$$

- If ϕ_{U}, ϕ_{V} and $\phi_{U \cap V}$ are isomorphisms, then so is $\phi_{U \cup V}$, by the Five Lemma.
- Suppose U is even and ϕ_{V} is iso. Then $U \cap V$ is also even so ϕ_{U} and $\phi u \cap v$ are also iso, so $\phi \cup \cup v$ is iso.
- Thus: if B can be covered by finitely many even open sets, then ϕ_{B} is iso.
- Remark: We have made the strong assumption that there are elements $y_{j} \in H^{*}(E)$ giving a basis for each $H^{*}\left(F_{b}\right)$. Without that assumption we need to use the Serre Spectral Sequence $H^{i}\left(B ; H^{j}(F)\right) \Longrightarrow H^{i+j}(E)$ which is much more complicated.
- Define $p: F_{n+1} \mathbb{C} \rightarrow F_{n} \mathbb{C}$ by $p\left(z_{0}, \ldots, z_{n}\right)=\left(z_{0}, \ldots, z_{n-1}\right)$.
- One can check that this is a fibre bundle.
- For $z=\left(z_{0}, \ldots, z_{n-1}\right) \in F_{n} \mathbb{C}$ we have $p^{-1}\{z\} \simeq \mathbb{C} \backslash\left\{z_{0}, \ldots, z_{n-1}\right\}$ so $H^{*}\left(p^{-1}\{z\}\right)=\mathbb{Z}\left\{1, v_{0}, \ldots, v_{n-1}\right\}=\mathbb{Z}\left\{1, i^{*}\left(a_{0, n}\right), \ldots, i^{*}\left(a_{n-1, n}\right)\right\}$.
- Thus the fibre bundle theorem gives $H^{i}\left(F_{n+1} \mathbb{C}\right)=H^{i}\left(F_{n} \mathbb{C}\right) \oplus \bigoplus_{j=0}^{n-1} H^{i-1}\left(F_{n} \mathbb{C}\right) \cdot a_{j n}$
- From $F_{3} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C}^{\times} \times(\mathbb{C} \backslash\{0,1\})$ we obtained $H^{*}\left(F_{3} \mathbb{C}\right)=\mathbb{Z}\left\{1, a_{01}, a_{02}, a_{12}, a_{01} a_{02}, a_{01} a_{12}\right\}$.
- It follows that the following set is a basis for $H^{*}\left(F_{4} \mathbb{C}\right)$:

1	a_{01}	a_{02}	a_{12}	$a_{01} a_{02}$	$a_{01} a_{12}$
a_{03}	$a_{01} a_{03}$	$a_{02} a_{03}$	$a_{12} a_{03}$	$a_{01} a_{02} a_{03}$	$a_{01} a_{12} a_{03}$
a_{13}	$a_{01} a_{13}$	$a_{02} a_{13}$	$a_{12} a_{13}$	$a_{01} a_{02} a_{13}$	$a_{01} a_{12} a_{13}$
a_{23}	$a_{01} a_{23}$	$a_{02} a_{23}$	$a_{12} a_{23}$	$a_{01} a_{02} a_{23}$	$a_{01} a_{12} a_{23}$

- In particular, $H^{*}\left(F_{4} \mathbb{C}\right)$ is generated as a ring by the elements $a_{p q}$.
- With a bit more pure algebra, we can also check that all relations follow from the relations $a_{p q}=a_{q p}, a_{p q}^{2}=0$ and $a_{p q} a_{q r}+a_{q r} a_{r p}+a_{r p} a_{p q}=0$ mentioned previously.
- $\mathbb{C P}^{n}=\left\{[z] \mid z \in \mathbb{C}^{n+1} \backslash\{0\}\right\}$, where $[z]=\left[z^{\prime}\right]$ iff $z^{\prime} \in \mathbb{C}^{\times}$z.
- $\mathbb{C} P^{1} \simeq \mathbb{C} \cup\{\infty\} \simeq S^{2}$ by $\left[z_{0}: z_{1}\right] \mapsto z_{0} / z_{1}$, so $H^{*}\left(\mathbb{C} P^{1}\right)=\mathbb{Z}\{1, x\}=\mathbb{Z}[x] / x^{2}$ with $x \in H^{2}\left(\mathbb{C} P^{1}\right)$.
- Claim: $\boldsymbol{H}^{*}\left(\mathbb{C} P^{n}\right)=\mathbb{Z}[x] / x^{n+1}$ with $x \in H^{2}\left(\mathbb{C P}^{n}\right)$.
- Or: $H^{2 k}\left(\mathbb{C} P^{n}\right)=\mathbb{Z} \cdot x^{k}$ for $0 \leq k \leq n$ but $H^{j}\left(\mathbb{C P}^{n}\right)=0$ otherwise.
- Put $U=\left\{[z] \in \mathbb{C} P^{n} \mid z_{n} \neq 0\right\}$ and $V=\left\{[z] \in \mathbb{C} P^{n} \mid\left(z_{0}, \ldots, z_{n-1}\right) \neq 0\right\}$.
- The map $[z] \mapsto\left(z_{0}, \ldots, z_{n-1}\right) / z_{n}$ gives $U \simeq \mathbb{C}^{n}$ and $U \cap V \simeq \mathbb{C}^{n} \backslash\{0\}$, so $H^{*}(U)=\mathbb{Z}$ and $H^{*}(U \cap V)=\mathbb{Z}\left\{1, U_{2 n-1}\right\}$.
- We have $V \stackrel{\xrightarrow{\leftrightarrows}}{\mathbb{C}} P^{n-1} \xrightarrow{s} V$ by $r([z])=\left[z_{0}, \ldots, z_{n-1}\right]$ and $s\left(\left[z_{0}, \ldots, z_{n-1}\right]\right)=\left[z_{0}, \ldots, z_{n-1}, 0\right]$. Clearly $r s=1$, and using $h(t,[z])=\left[z_{0}, \ldots, z_{n-1}, t z_{n}\right]$ we get $1 \simeq$ sr. Thus $\boldsymbol{H}^{*}(V) \simeq \boldsymbol{H}^{*}\left(\mathbb{C} P^{n-1}\right)=\mathbb{Z}[x] / x^{n}$.
- For $p>0$ we now have a Mayer-Vietoris sequence $H^{\rho-1}\left(\mathbb{C} P^{n-1}\right) \xrightarrow{k^{*}} H^{\rho-1}\left(S^{2 n-1}\right) \xrightarrow{\delta} H^{p}\left(\mathbb{C} P^{n}\right) \xrightarrow{i^{*}} H^{\rho}\left(\mathbb{C} P^{n-1}\right) \xrightarrow{k^{*}} H^{\rho}\left(S^{2 n-1}\right)$
For most p the second and last terms are zero so $H^{p}\left(\mathbb{C} P^{n}\right) \simeq H^{p}\left(\mathbb{C} P^{n-1}\right)$. In particular we have $x \in H^{2}\left(\mathbb{C} P^{n}\right)$ and $H^{2 j}\left(\mathbb{C} P^{n}\right)=\mathbb{Z} \cdot x^{j}$ for $0 \leq j<n$.
- One exception is the case $p=2 n$ when we get $H^{2 n}\left(\mathbb{C} P^{n}\right)=\mathbb{Z} . \delta\left(u_{2 n-1}\right)$. Different methods are needed to show that $\delta\left(u_{2 n-1}\right)= \pm x^{n}$, completing the induction.

Cohomology of Milnor hypersurfaces

- Let $\mathbb{C} P^{m} \stackrel{p}{\leftarrow} \mathbb{C} P^{m} \times \mathbb{C} P^{n} \xrightarrow{q} \mathbb{C} P^{n}$ be the projection maps.
- We have seen that $H^{*}\left(\mathbb{C} P^{m}\right)=\mathbb{Z}[x] / x^{m+1}$ and $H^{*}\left(\mathbb{C} P^{n}\right)=\mathbb{Z}[x] / x^{n+1}$.
- Put $y=p^{*}(x)$ and $z=q^{*}(x)$ so Künneth gives

$$
H^{*}\left(\mathbb{C} P^{m} \times \mathbb{C} P^{n}\right)=\mathbb{Z}[y, z] /\left(y^{m+1}, z^{n+1}\right)=\mathbb{Z}\left\{y^{i} z^{j} \mid i \leq m, j \leq n\right\} .
$$

- Now suppose that $m \leq n$ and put
$M=$ Milnor hypersurface $=\left\{([z],[w]) \in \mathbb{C} P^{m} \times \mathbb{C} P^{n} \mid \sum_{i=0}^{m} z_{i} w_{i}=0\right\}$.
There are restricted projections $\mathbb{C} P^{m} \stackrel{p_{1}}{\longleftrightarrow} M \xrightarrow{q_{1}} \mathbb{C} P^{n}$.
- $p_{1}^{-1}\{[z]\}=P\left(V_{z}\right)$, where $V_{z}=\left\{w \mid \sum_{i=0}^{m} z_{i} w_{i}=0\right\}$, so $\left\{z^{j} \mid 0 \leq j<n-1\right\}$ gives a basis for $H^{*}\left(p_{1}^{-1}\{[z]\}\right)$.
- Fibre bundle theorem: $\left\{y^{i} z^{j} \mid i<m, j<n-1\right\}$ is a basis for $H^{*}(M)$
- In particular z^{n-1} is expressible in terms of $1, z, \ldots, z^{n-2}$.
- It turns out that

$$
\begin{aligned}
H^{*}(M) & =\mathbb{Z}[y, z] /\left(y^{m}, z^{n-1}-y z^{n-2}+\ldots \pm y^{n-1}\right) \\
& =\mathbb{Z}\left\{y^{i} z^{j} \mid i \leq m, j<n\right\}
\end{aligned}
$$

Cohomology of Fermat hypersurfaces

- Fix $d, n>2$ and put
$M=$ Fermat hypersurface $=\left\{[z] \in \mathbb{C} P^{2 n} \mid \sum_{k=0}^{2 n} z_{k}^{d}=0\right\}$.
- Claim: there are elements $x \in H^{2}(M)$ and $y \in H^{2 n}(M)$ with $H^{*}(M)=\mathbb{Z}\left\{1, x, \ldots, x^{n-1}, y, x y, \ldots, x^{n-1} y\right\}=\mathbb{Z}[x, y] /\left(y^{2}, x^{n}-d y\right)$.
- Start of the proof: put $\omega=e^{i \pi / d}$ and define $j: \mathbb{C} P^{n-1} \xrightarrow{j} M \xrightarrow{\stackrel{C}{C}} \mathbb{P}^{2 n-1}$ by $j\left(\left[z_{0}, \ldots, z_{n-1}\right]\right)=\left[z_{0}, \ldots, z_{n-1}, \omega z_{0}, \ldots, \omega z_{n-1}, 0\right]$.
- Also note that for $[z] \in M$ we have $\left(z_{0}, \ldots, z_{2 n-1}\right) \neq 0$ so can define $r: M \rightarrow \mathbb{C} P^{2 n-1}$ by $r\left(\left[z_{0}, \ldots, z_{2 n}\right]\right)=\left[z_{0}, \ldots, z_{2 n-1}\right]$.
- This gives $\mathbb{Z}[x] / x^{2 n} \xrightarrow{r^{*}} \boldsymbol{H}^{*}(M) \xrightarrow{j^{*}} \mathbb{Z}[x] / x^{n}$ with $r j$ homotopic to the inclusion $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{2 n-1}$ and so $j^{*}\left(r^{*}(x)\right)=x$.
- A typical point $[w] \in \mathbb{C} P^{2 n-1}$ has preimage $r^{-1}\{[\omega]\} \subset M$ of size d (because a nonzero complex number has d different d th roots). From this we can deduce by degree theory that $x^{2 n-1}$ is divisible by d in $H^{4 n-2}(M)$.
- Define $f: \mathbb{C} P^{2 n} \rightarrow[0,1]$ by $f([z])=\left|\sum_{k} z_{k}^{d}\right| / \sum_{k}\left|z_{k}^{d}\right|$, so $M=f^{-1}\{0\}$. We can try to deform $\mathbb{C} P^{2 n}$ onto M by moving in the direction of steepest decrease of f. This fails because of stationary points, but the failure is controlled by Morse theory, which gives homological information.
- Recall that $\operatorname{Flag}(V)$ is the space of all lists $\left(W_{0}, \ldots, W_{d}\right)$ where $0=W_{0}<W_{1}<\ldots<W_{d}=V$ with $\operatorname{dim}_{\mathbb{C}}\left(W_{i}\right)=i$.
- We can define $p_{i}: \operatorname{Flag}(V) \rightarrow P V$ by $p_{i}(W)=W_{i} \ominus W_{i-1}$ (the orthogonal complement of W_{i-1} in $\left.W_{i}\right)$. This gives $x_{i}=p_{i}^{*}(x) \in H^{2}(\operatorname{Flag}(V))$.
- Let s_{k} be the k 'th elementary symmtric polynomial, i.e. the sum of all terms like $x_{i_{1}} \cdots x_{i_{k}}$ with $i_{1}<\cdots<i_{k}$, or the coefficient of t^{d-k} in $\Pi_{i}\left(t+x_{i}\right)$.
- We will show later that $H^{*}(\operatorname{Flag}(V))=\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] /\left(s_{1}, \ldots, s_{d}\right)$.
- Let B be the set of monomials $x_{1}^{n_{1}} \ldots x_{d}^{n_{d}}$ with $0 \leq n_{i}<i$ for all i; then B is a basis for $H^{*}(\operatorname{Flag}(V))$
- To prove these statements, we will need to generalise them, to give statements that can be proved inductively using the fibre bundle theorem.

Collapse and excision

- For closed $Y \subseteq X$ we let X / Y be the quotient space where Y is collapsed to a single point, taken as the basepoint.

- The collapse $p: X \rightarrow X / Y$ induces $p^{*}: \tilde{H}^{*}(X / Y) \rightarrow H^{*}(X, Y)$, which is usually iso (when Y is closed).
- This works for submanifolds of manifolds, subcomplexes of simplicial complexes, subsets of \mathbb{R}^{n} defined by polynomial inequalities.
- It can fail if X has an infinite amount of topological structure arbitrarily close to Y as with fractals.
- Keywords: excision and neighbourhood deformation retract.
- If $U \subseteq X$ is open we can often find $Y \subseteq U$ with Y closed in X such that $Y \rightarrow U$ is a homotopy equivalence;
then $H^{*}(X, U)=H^{*}(X, Y)$, which is usually $\widetilde{H}^{*}(X / Y)$.
- Example: $H^{n-1}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{0\}\right)=H^{n}\left(B^{n}, B^{n} \backslash\{0\}\right)=H^{n}\left(B^{n}, S^{n-1}\right)=$ $\widetilde{H}^{n}\left(B^{n} / S^{n-1}\right)=\widetilde{H}^{n}\left(S^{n}\right)=\mathbb{Z}$.
- For $Y \subseteq X$ put $C^{*}(X, Y)=\operatorname{ker}\left(i^{*}: C^{*}(X) \rightarrow C^{*}(Y)\right)$ and $H^{*}(X, \bar{Y})=H^{*}\left(C^{*}(X, Y)\right)$ (relative cohomology).
- This is a nonunital ring and a module over $H^{*}(X)$.
- The short exact sequence $C^{*}(X, Y) \rightarrow C^{*}(X) \rightarrow C^{*}(Y)$ gives a long exact sequence

$$
H^{k-1}(Y) \xrightarrow{\delta} H^{k}(X, Y) \xrightarrow{\theta} H^{k}(X) \xrightarrow{i^{*}} H^{k}(Y) \xrightarrow{\delta} H^{k+1}(X, Y) .
$$

- $H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{0\}\right)=H^{*}\left(B^{n}, S^{n-1}\right)=\mathbb{Z} . v_{n}$ where $v_{n}=\delta\left(u_{n-1}\right) \in H^{n}$.
- The maps δ and θ are $H^{*}(X)$-linear (with \pm-signs)
- If X has a specified basepoint $* \in X$ we put $\widetilde{C}^{k}(X)=C^{k}(X,\{*\})$ and

$$
\widetilde{H}^{k}(X)=H^{k}(X,\{*\})= \begin{cases}H^{k}(X) & \text { if } k>0 \\ \left\{u: \pi_{0}(X) \rightarrow \mathbb{Z} \mid u(*)=0\right\} & \text { if } k=0\end{cases}
$$

$-\widetilde{H}^{*}\left(\mathbb{R}^{n} \backslash\{0\}\right)=\widetilde{H}^{*}\left(S^{n-1}\right)=\mathbb{Z} . u_{n-1}$.

Cohomology of the unitary group

- Claim: $H^{*}(U(n))$ is freely generated by elements $a_{2 k-1} \in H^{2 k-1}(U(n))$ for $1 \leq k \leq n$ with $a_{i}^{2}=0$.
- $H^{*}(U(3))=E\left[a_{1}, a_{3}, a_{5}\right]=\mathbb{Z}\left\{1, a_{1}, a_{3}, a_{5}, a_{1} a_{3}, a_{1} a_{5}, a_{3} a_{5}, a_{1} a_{3} a_{5}\right\}$
- $U(1)=S^{1}$ and $U(2)=S^{1} \times S^{3}$ by $(a, b, c) \mapsto\left[\begin{array}{cc}a b & -\bar{c} \\ a c & \bar{b}\end{array}\right]$. For $n>2$ the spaces $U(n)$ and $P(n)=\prod_{k=1}^{n} S^{2 k-1}$ have isomorphic cohomology rings but are not homotopy equivalent.
- Define $U(n) \xrightarrow{i} U(n+1) \xrightarrow{p} S^{2 n+1}$ by

$$
i(A)=\left[\begin{array}{c|c}
A & 0 \\
\hline 0 & 1
\end{array}\right] \quad p(B)=B \cdot e_{n+1}=\text { last column of } B .
$$

- $p^{-1}\left\{e_{n+1}\right\}=i(U(n))$, and $p^{-1}\{u\}=B . i(U(n))$ for any B with $B . e_{n+1}=u$;
so p is a fibre bundle projection.
- If we knew that $H^{*}(U(n))=E\left[a_{1}, \ldots, a_{2 n-1}\right]$ and that there were elements $a_{2 k-1} \in H^{2 k-1}(U(n+1))$ for $k<n$ with $i^{*}\left(a_{2 k-1}\right)=a_{2 k-1}$ then we could put $a_{2 n-1}=p^{*}\left(u_{2 n-1}\right)$ and the fibre bundle theorem would give $H^{*}(U(n+1))=E\left[a_{1}, \ldots, a_{2 n+1}\right]$.
- For $z \in S^{1}$ and $L \in \mathbb{C} P^{n}$ we put $r(z, L)=z .1_{L} \oplus 1_{L \perp}$ on $L \oplus L^{\perp}=\mathbb{C}^{n+1}$ or $r(z,[u]) \cdot v=v+(z-1)\langle v, u\rangle u /\langle u, u\rangle \in v+L$
- This gives a continuous map $r: S^{1} \times \mathbb{C} P^{n} \rightarrow U(n+1)$.
- We also put $r(z, L, A)=r(z, L) . A$ giving $r: S^{1} \times \mathbb{C} P^{n} \times U(n) \rightarrow U(n+1)$
- We will see that this is "almost a homeomorphism".
- Put $Y=\left(S^{1} \times \mathbb{C} P^{n-1}\right) \cup\left(\{1\} \times \mathbb{C} P^{n}\right) \subset S^{1} \times \mathbb{C} P^{n}$
- For $z=1$ we have $p(r(1, L))=r(1, L) \cdot e_{n+1}=e_{n+1}$ always. For $z \neq 1$ we have $p(r(z, L))=e_{n+1}$ iff $r(z, L) \cdot e_{n+1}=e_{n+1}$ iff $e_{n+1} \in L^{\perp}$ iff $L \in \mathbb{C} P^{n}$.
- Also, for $A \in U(n)$ we have $A . e_{n+1}=e_{n+1}$ so $p(r(z, L, A))=p(r(z, L))$.
- Conclusion: $p(r(z, L, A))=e_{n+1}$ iff $(z, L, A) \in Y \times U(n)$.
- Now consider $w \in S^{2 n+1} \backslash\{e\}$ where $e=e_{n+1}$. Put $z=\langle w, w-e\rangle /\langle e, w-e\rangle$ and $L=\mathbb{C} .(w-e)$. Calculation gives $(z, L) \in\left(S^{1} \times \mathbb{C} P^{n}\right) \backslash Y$ and $r^{-1}\{w\}=\{(z, L)\}$.
- Using this: r induces a homeomorphism $Q=\left(S^{1} \times \mathbb{C} P^{n} \times U(n)\right) /(Y \times U(n)) \rightarrow U(n+1) / U(n)$.
- Thus: a long exact sequence relates $H^{*}(U(n)), H^{*}(U(n+1))$ and $\widetilde{H}^{*}(Q)$
- We will see that $\widetilde{H}^{k}(Q)=0$ for $k<2 n+1$, so $H^{k}(U(n+1))=H^{k}(U(n))$ for $k<2 n$.
- Recall $Y=\left(S^{1} \times \mathbb{C} P^{n-1}\right) \cup\left(\{1\} \times \mathbb{C} P^{n}\right) \subset X=S^{1} \times \mathbb{C} P^{n}$.
- Now $X \backslash Y=\left(S^{1} \backslash\{1\}\right) \times\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}\right)$ and $S^{1} \backslash\{1\} \simeq \mathbb{R}$ (stereographically) and $\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1} \simeq \mathbb{C}^{n} \simeq \mathbb{R}^{2 n}\left(\right.$ by $\left.\left[z_{0}: \ldots: z_{n}\right] \mapsto\left(z_{0}, \ldots, z_{n-1}\right) / z_{n}\right)$.
- Now $X \backslash Y \simeq \mathbb{R}^{2 n+1}$ and $X / Y \simeq(X \backslash Y) \cup\{\infty\} \simeq \mathbb{R}^{2 n+1} \cup\{\infty\} \simeq S^{2 n+1}$
- This gives $Q=(X \times U(n)) /(Y \times U(n)) \simeq\left(S^{2 n+1} \times U(n)\right) /(\{*\} \times U(n))$ so $\tilde{H}^{*}(Q)=H^{*}\left(S^{2 n+1} \times U(n),\{*\} \times U(n)\right)$.
- Künneth gives $H^{*}\left(S^{2 n+1} \times U(n)\right)=H^{*}(U(n)) \oplus H^{*}(U(n)) \cdot u_{2 n+1}$.
- The LES for relative cohomology then gives $\widetilde{H}^{*}(Q) \simeq H^{*}\left(S^{2 n+1} \times U(n),\{*\} \times U(n)\right)=H^{*}(U(n)) . u_{2 n+1}$.
- But also $Q \simeq U(n+1) / U(n)$ so $H^{*}(U(n+1), U(n)) \simeq H^{*}(U(n)) \cdot u_{2 n+1}$.
- For $i<2 n$ we have $H^{i}(U(n+1), U(n))=H^{i+1}(U(n+1), U(n))=0$ so $H^{i}(U(n+1)) \simeq H^{i}(U(n))$.
- Thus, for $k \leq n$ there is a unique $a_{2 k-1} \in H^{2 k-1}(U(n+1))$ that maps to $a_{2 k-1} \in H^{2 k-1}(U(n))$. We also put $a_{2 n+1}=p^{*}\left(u_{2 n+1}\right) \in H^{2 n+1}(U(n+1))$.
- The restriction $i^{*}: H^{*}(U(n+1)) \rightarrow H^{*}(U(n))$ is a ring map that hits all the generators, so it is surjective. Thus $\delta=0$ in the LES.
- We can now conclude that $H^{*}(U(n+1))=E\left[a_{1}, \ldots, a_{2 n+1}\right]$.

Hopf algebras

- Define $U(n)^{2} \xrightarrow{\mu} U(n) \stackrel{\eta}{\leftarrow} 1$ by $\mu(A, B)=A B$ and $\eta(1)=I$. These make $U(n)$ a Lie group.
- Putting $A^{*}=H^{*}(U(n))=E\left[a_{1}, a_{3}, \ldots, a_{2 n-1}\right]$ we get ring maps $A^{*} \otimes A^{*} \stackrel{\psi=\mu^{*}}{\leftrightarrows} A^{*} \xrightarrow{\epsilon=\eta^{*}} \mathbb{Z}$.
- The associativity law says that $\mu(\mu \times 1)=\mu(1 \times \mu): U(V)^{3} \rightarrow U(V)$, and this implies that $(\psi \otimes 1) \psi=(1 \otimes \psi) \psi: A^{*} \rightarrow\left(A^{*}\right)^{\otimes 3}$. The unit laws imply that $(\epsilon \otimes 1) \psi=1=(1 \otimes \epsilon) \psi: A^{*} \rightarrow A^{*}$.

- A structure like this is called a Hopf algebra.
- We say that $x \in A^{n}$ is primitive if $\epsilon(x)=0$ and $\psi(x)=x \otimes 1+1 \otimes x$.
- For $A^{*}=H^{*}(U(n))=E\left[a_{1}, \ldots, a_{2 n-1}\right]$, the ring $A^{*} \otimes A^{*}$ is $E\left[b_{1}, \ldots, b_{2 n-1}, c_{1}, \ldots, c_{2 n-1}\right]$ where $b_{2 i-1}=\pi_{0}^{*}\left(a_{2 i-1}\right), c_{2 i-1}=\pi_{1}^{*}\left(a_{2 i-1}\right)$.
- Claim: $a_{2 i-1}$ is primitive, i.e.
$\mu^{*}\left(a_{2 i-1}\right)=\pi_{0}^{*}\left(a_{2 i-1}\right)+\pi_{1}^{*}\left(a_{2 i-1}\right)=b_{2 i-1}+c_{2 i-1}$.
- Because μ^{*} is a ring map, this determines μ^{*} on all elements.

Proof of primitivity

- Claim: the map $\psi=\mu^{*}: E\left[a_{1}, \ldots, a_{2 n-1}\right] \rightarrow E\left[b_{1}, \ldots, b_{2 n-1}, c_{1}, \ldots, c_{2 n-1}\right]$ sends $a_{2 i-1}$ to $b_{2 i-1}+c_{2 i-1}$.
- Put $u_{2 i-1}=\psi\left(a_{2 i-1}\right)-b_{2 i-1}-c_{2 i-1}$; we must show that $u_{2 i-1}=0$.
- From the counit laws $(\epsilon \otimes 1) \psi=(1 \otimes \epsilon) \psi=1$ we see that $u_{2 i-1} \in I^{*} \otimes I^{*}$ where $I^{*}=\operatorname{ker}(\epsilon)=\widetilde{H}^{*}(U(n))$.
- The inclusion $j: U(n-1) \rightarrow U(n)$ is a group homomorphism with $H^{*}(U(n-1))=A^{*} / a_{2 n-1}$; this gives a diagram

$$
\begin{gathered}
A^{*} \xrightarrow{\psi} A^{*} \otimes A^{*} \\
j^{*} \\
\downarrow \\
\left.A^{*} / a_{2 n-1} \xrightarrow[\psi]{\longrightarrow}\left(A^{*} \otimes A^{*}\right) /\left(b_{2 n-1}\right)^{*}, c_{2 n-1}\right) .
\end{gathered}
$$

- For $i<n$ we assume inductively that $j^{*}\left(a_{2 i-1}\right)$ is primitive; also $j^{*}\left(a_{2 n-1}\right)=0$ is primitive. So $u_{2 i-1} \in J^{*}=\left(b_{2 n-1}, c_{2 n-1}\right)$ for $i \leq n$.
- For $i<n$ we have $J^{2 i-1}=0$ so $u_{2 i-1}=0$.
- For $i=n$ we have $J^{2 n-1}=\mathbb{Z}\left\{b_{2 n-1}, c_{2 n-1}\right\}$ but $I^{*} \otimes I^{*}$ is generated by all products $b_{2 p-1} C_{2 q-1}$ so $\left(I^{*} \otimes I^{*}\right) \cap J^{*}$ is zero in degree $2 n-1$. Thus $u_{2 n-1}$ is zero as well.
- A vector bundle over a space X is a collection of finite-dimensional vector spaces V_{x} for each $x \in X$, "varying continuously".
- There must be a given topology on the total space $E V=\left\{(x, v) \mid x \in X, v \in V_{x}\right\}$ such that $p:(x, v) \mapsto x$ is continuous.
- Say $U \subseteq X$ is even if there is a homeomorphism $p^{-1}(U) \simeq \mathbb{R}^{d} \times U$ compatible with projection and vector space structure.
- We require that X can be covered by even open sets.
- We usually assume that X is compact.
- It is harmless to assume that there are continuously varying inner products.
- Example: for $z \in S^{1}$ put $V_{z}=\left\{w \in \mathbb{C} \mid w^{2} \in \mathbb{R}_{+} z\right\}$ so $V_{\exp (i \theta)}=\mathbb{R} \cdot \exp (i \theta / 2)$. This is a vector bundle, and $E V$ is a Möbius strip.
- The tangent bundle of S^{n} is $T_{x} S^{n}=\left\{v \in \mathbb{R}^{n+1} \mid\langle x, v\rangle=0\right\}$.
- The tautological bundle over $\mathbb{C} P^{n}$ is $T_{L}=L$, so
$E T=\left\{(v, L) \mid v \in L, L \leq \mathbb{C}^{n+1}, \operatorname{dim}(L)=1\right\}$.
- The image bundle over $P=\left\{A \in M_{n}(\mathbb{C}) \mid A^{2}=A\right\}$ is $W_{A}=\operatorname{img}(A)=\operatorname{ker}(I-A)$.
- Many interesting spaces can be described in terms of vector bundles.

Orientations and Thom classes

- For a vector space $V \simeq \mathbb{R}^{d}$, let $\operatorname{Or}(V)$ be the set of generators of the group $H^{d}\left(V, V^{\times}\right) \simeq \mathbb{Z}$ (so $|\operatorname{Or}(V)|=2$).
- If V is a complex vector space, there is a canonical orientation (because $G L_{n}(\mathbb{C})$ is connected).
- If V is a d-dimensional vector bundle over X, the set $\operatorname{Or}(X)=\left\{(x, u) \mid x \in X, u \in \operatorname{Or}\left(V_{x}\right)\right\}$ has a natural topology as a double cover of X.
- An orientation of V is a continuous choice of $u_{x} \in \operatorname{Or}\left(V_{x}\right)$ for each $x \in X$.
- The Möbius bundle has no orientation; but any complex bundle has a canonical orientation.
- A Thom class for V is an element $u \in H^{d}\left(E V, E V^{\times}\right)$such that $i_{x}^{*}(u) \in H^{d}\left(V_{x}, V_{x}^{\times}\right)$is a generator for all $x \in X$.
- Theorem (Thom): there is a natural bijection from Thom classes to orientations. Moreover, if u is a Thom class then multiplication by u gives an isomorphism $H^{k}(X) \rightarrow H^{k+d}\left(E V, E V^{\times}\right) \simeq \widetilde{H}^{k+d}\left(X^{V}\right)$.
- The proof is like the fibre bundle theorem. If U_{0}, U_{1} are open in X, and the claim holds for U_{0}, and U_{1} is even, then the claim holds for $U_{0} \cup U_{1}$ by a Mayer-Vietoris sequence. The claim therefore holds for finite unions of even sets, and thus for compact subsets of X.
- If V is a d-dimensional vector bundle over a compact space X we define the Thom space X^{V} as $E V \cup\{\infty\}$.
- We will prove the Thom Isomorphism Theorem:
if V is oriented then $\widetilde{H}^{k}\left(X^{V}\right) \simeq H^{k-d}(X)$.
- Many calculations can be deduced from this.
- Recall the Möbius bundle $V_{\exp (i \theta)}=\mathbb{R}$. $\exp (i \theta / 2)$ over S^{1}. Define $f: E V \rightarrow \mathbb{R} P^{2}=\left(\mathbb{R}^{3} \backslash\{0\}\right) / \mathbb{R}^{\times}$by $f\left(e^{i \theta}, t e^{i \theta / 2}\right)=[\cos (\theta / 2), \sin (\theta / 2), t]$. With $f(\infty)=[0,0,1]$ this gives $\left(S^{1}\right)^{V} \simeq \mathbb{R} P^{2}$.
- Recall the tautological bundle T over $\mathbb{C} P^{n}$ with $T_{L}=L$. One can check that there is a well-defined $f: E T \rightarrow \mathbb{C} P^{n+1}$ given by $f(v, \mathbb{C} u)=\mathbb{C} .(u,\langle u, v\rangle)$.
With $f(\infty)=\mathbb{C} . e_{n+1}$ this gives $\left(\mathbb{C} P^{n}\right)^{T} \simeq \mathbb{C} P^{n+1}$
- After choosing inner products we can put $B(V)=\{(x, v) \in E V \mid\|x\| \leq 1\}$ and $S(V)=\{(x, v) \in E V \mid\|x\|=1\}$ and $E V^{\times}=\{(x, v) \in E V \mid v \neq 0\}$
- Recall that $\mathbb{R}^{d} \cup\{\infty\} \simeq S^{d} \simeq B^{d} / S^{d-1}$

By doing this in each fibre we get $X^{V} \simeq B(V) / S(V)$.

- This gives $\widetilde{H}^{*}\left(X^{V}\right)=H^{*}(B(V), S(V))=H^{*}\left(E V, E V^{\times}\right)$.

The Euler class

- Let V be an oriented n-dimensional vector bundle over X, with Thom class $u(V) \in \tilde{H}^{n}\left(X^{V}\right)$.
- Define $i: X \rightarrow X^{V}$ by $i(x)=0 \in V_{x} \subset X^{V}$.
- Put $e(V)=i^{*}(u(V)) \in H^{n}(X)$. This is called the Euler class of V.
- If $E V=\mathbb{R} \times X$ then i is homotopic to the constant map at ∞ and so $e(V)=0$.
- In general one can show that $e(U \oplus W)=e(U) e(W)$.
- So if $V \simeq \mathbb{R} \oplus W$ then $e(V)=0$.
- A section of V is a continuous map $s: X \rightarrow E V$ with $s(x) \in V_{x}$ for all x.
- If s is a section with $s(x) \neq 0$ for all x then we can put $U_{x}=\mathbb{R} . s(x)$ and $W_{x}=U_{x}^{\perp}$ to get $e(V)=0$.
- By contrapositive: if $e(V) \neq 0$ then every section of V must vanish somewhere.
- Later we will see other characteristic classes giving invariants in $H^{*}(X)$ of vector bundles over X; these help to classify vector bundles up to isomorphism.
- Let V be an oriented n-dimensional vector bundle over X, with Euler class $e(V) \in H^{n}(X)$.
- The pair $(B V, S V)$ has a long exact sequence:

$$
\ldots \rightarrow H^{k}(B V, S V) \xrightarrow{\alpha} H^{k}(B V) \xrightarrow{\beta} H^{k}(S V) \xrightarrow{\delta} H^{k+1}(B V, S V) \rightarrow \ldots
$$

- Here $H^{k}(B V, S V)=\widetilde{H}^{k}(B V / S V)=\widetilde{H}^{k}\left(X^{V}\right)=H^{k-n}(X) \cdot u(V)$.
- The projection $p: B V \rightarrow X$ is a homotopy equivalence, with inverse given by the zero section $X \rightarrow B V$; so $H^{k}(B V)=H^{k}(X)$.
- This identifies α with the map i^{*} so $\alpha(a)=a . e(V)$.
- We now have an exact sequence as follows, called the Gysin sequence

$$
\rightarrow H^{k-1}(S V) \rightarrow H^{k-n}(X) \xrightarrow{X e(V)} H^{k}(X) \xrightarrow{\beta} H^{k}(S V) \xrightarrow{\delta} H^{k+1-n}(X) \rightarrow \ldots
$$

- Example: for the tautological bundle T over $\mathbb{C} P^{n}$ we have $S T=$
$\left\{(v, L) \mid v \in L \leq \mathbb{C}^{n+1},\|v\|=1\right\}=\left\{(v, \mathbb{C} v) \mid v \in \mathbb{C}^{n+1},\|v\|=1\right\} \simeq S^{2 n+1}$. Also $e(T)=x$ and $H^{*} S T$ is mostly zero so $x x: H^{k-2} \mathbb{C} P^{n} \rightarrow H^{k} \mathbb{C} P^{n}$ is usually iso. Now we can complete the proof that $H^{*}\left(\mathbb{C} P^{n}\right) \simeq \mathbb{Z}[x] / x^{n+1}$.

Partitions of unity

- Let X be a compact Hausdorff space with an open cover $\mathcal{U}=\left(U_{i}\right)_{i \in I}$.
- For $\phi: X \rightarrow[0, \infty)$ we put $\operatorname{supp}(\phi)=\overline{\phi^{-1}((0, \infty))}$.
- A partition of unity subordinate to \mathcal{U} is a list $\phi_{1}, \ldots, \phi_{n}: X \rightarrow[0,1]$ with $\sum_{j} \phi_{j}=1$ such that for each j there exists i with $\operatorname{supp}\left(\phi_{j}\right) \subseteq U_{i}$.
- Lemma: there always exists a partition of unity.
- Proof: For each x choose i with $x \in U_{i}$.
- By standard general topology and Urysohn's Lemma: we can choose $\psi_{x}: X \rightarrow[0,1]$ with $\psi_{x}(x)=1$ and $\operatorname{supp}\left(\psi_{x}\right) \subseteq U_{i}$.
- The open sets $V_{x}=\psi_{x}^{-1}((0, \infty))$ cover the compact space X, so we can choose x_{1}, \ldots, x_{n} with $\bigcup_{j=1}^{n} V_{x_{j}}=X$.
- Now put $\psi=\sum_{j=1}^{n} \psi_{x_{i}}$ so $\psi>0$ everywhere. Put $\phi_{j}=\psi_{x_{j}} / \psi$. \square
- Example: let V be a vector bundle over X, and let \mathcal{U} be the family of even open sets, i.e. those over which $E V$ looks like $\mathbb{R}^{d} \times U$. Then there are maps $\phi_{1}, \ldots, \phi_{n}: X \rightarrow[0,1]$ and even open sets U_{1}, \ldots, U_{n} with $\sum_{j} \phi_{j}=1$ and $\operatorname{supp}\left(\phi_{j}\right) \subseteq U_{j}$.
- By adjusting the argument slightly we can assume that there are even open sets U_{j}^{\prime} with $\overline{U_{j}} \subseteq U_{j}^{\prime}$.
- $\operatorname{Vect}_{k}(X)=\{$ iso classes of k-dimensional vector bundles over $X\}$
- $\operatorname{Vect}(X)$ is a semiring with $[U]+[V]=[U \oplus V],[U][V]=[U \otimes V]$

This is commutative but there are no additive inverses.

- Theorem: there are spaces G_{k} with $\operatorname{Vect}_{k}(X) \simeq\left[X, G_{k}\right]$ for all compact X.
- Put $P=\mathbb{R}[t]$ and $P_{m}=\{f \in P \mid \operatorname{deg}(f)<m\}$. Put $G_{k m}=\left\{V \leq P_{m} \mid \operatorname{dim}(V)=k\right\}$ and $G_{k}=\{V \leq P \mid \operatorname{dim}(V)=k\}=\bigcup_{m} G_{k m}$.
- Define $\theta_{k m}: \widetilde{G}_{k m}=\left\{\right.$ injective linear $\left.\alpha: \mathbb{R}^{k} \rightarrow P_{m}\right\} \rightarrow G_{k m}$ by $\theta(\alpha)=\alpha\left(\mathbb{R}^{k}\right)$. Declare that $U \subseteq G_{k}$ is open iff $\theta_{k m}^{-1}(U)$ is open for all k and m.
- Define a tautological bundle T over G_{k} by $E T=\left\{(v, V) \mid v \in V \in G_{k}\right\}$.
- For any $f: X \rightarrow Y$ and any W over Y, define $f^{*}(W)_{x}=W_{f(x)}$ so $E\left(f^{*} W\right)=\{(x, w) \in X \times E W \mid f(x)=\pi(w)\}$.
- We now have $\phi_{0}: \operatorname{Map}\left(X, G_{k}\right) \rightarrow \operatorname{Vect}_{k}(X)$ by $\phi_{0}(f)=\left[f^{*}(T)\right]$.
- Claim: every V over X is isomorphic to $f^{*}(T)$ for some f, and $f_{0}^{*}(T) \simeq f_{1}^{*}(T)$ iff f_{0} and f_{1} are homotopic.

Extension of sections

- Let Y be a closed subset of a compact Hausdorff space X.
- Tietze's Theorem: any continuous map $Y \rightarrow \mathbb{R}$ can be extended to a continuous map $X \rightarrow \mathbb{R}$.
- Let V be a vector bundle over X. A section of V over Y is a continuous map $s: Y \rightarrow E V$ with $\pi(s(y))=y$ (i.e. $s(y) \in V_{y}$) for all y.
- Theorem: any section s over Y can be extended over X.
- Proof: first suppose that V is constant, so $E V=\mathbb{R}^{d} \times X$ and sections over Y are just maps $Y \rightarrow \mathbb{R}^{d}$. This case is immediate from Tietze's theorem.
- More generally, choose $\phi_{j}, U_{j}, U_{j}^{\prime}$ where $\operatorname{supp}\left(\phi_{j}\right) \subseteq U_{j} \subseteq \bar{U}_{j} \subseteq U_{j}^{\prime}$ and V is constant over U_{j}^{\prime}. By the previous case we can choose s_{j} over $\overline{U_{j}}$ extending $\left.s\right|_{Y \cap \overline{U_{j}}}$.
- Define t_{j} to be $\phi_{j} s_{j}$ on $\overline{U_{j}}$, and 0 outside U_{j}. As $\operatorname{supp}\left(\phi_{j}\right) \subseteq U_{j}$ this definition is consistent and gives a continuous section.
- Define a section $t=\sum_{j} t_{j}$ over X; as $\sum_{j} \phi_{j}=1$ this extends $s . \square$
- Application: A morphism $\alpha: V \rightarrow W$ is the same as a section of the bundle $\operatorname{Hom}(V, W)_{x}=\operatorname{Hom}\left(V_{x}, W_{x}\right)$. Thus, if we have a morphism defined only over Y, we can extend it to get a morphism defined over X.
- Let $\alpha: V \rightarrow W$ be a morphism of d-dimensional vector bundles over X, and put $A=\left\{x \mid \alpha_{x}: V_{x} \rightarrow W_{x}\right.$ is iso $\}$.
- Claim: A is open
- First suppose that V and W are constant, so $E V=E W=\mathbb{R}^{d} \times X$. Then α is essentially a continuous map $X \rightarrow \operatorname{Hom}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)=M_{d}(\mathbb{R})$, and $A=\left\{x \mid \operatorname{det}\left(\alpha_{x}\right) \neq 0\right\}$, which is open.
- In general, for any $x \in X$ we can choose an open neighbourhood U on which V and W are constant. The previous case then shows that $A \cap U$ is open. As this works for all x we see that A is open.
- Corollary: if $f_{0} \simeq f_{1}$ via $h:[0,1] \times X \rightarrow Y$ then $f_{0}^{*}(W) \simeq f_{1}^{*}(W)$.
- For $a \in[0,1]$ define $\left(V_{a}\right)_{x}=W_{h(a, x)}$; we must show that $V_{0} \simeq V_{1}$. Write $a \sim b$ if $V_{a} \simeq V_{b}$. If the equivalence classes are open, connectedness of $[0,1]$ implies that $0 \sim 1$.
- Define U, U^{\prime} over $[0,1] \times X$ by $U_{(t, x)}=W_{h(t, x)}$ and $U_{(t, x)}^{\prime}=W_{h(a, x)}$.
- The identity gives an isomorphism $\alpha: U \rightarrow U^{\prime}$ over $\{a\} \times X$. By the section extension lemma, this can be extended to a homomorphism $\alpha: U \rightarrow U^{\prime}$ over all of $[0,1] \times X$.
- The invertibility locus of α is open and contains $\{a\} \times X$. As X is compact it contains some $(a-\epsilon, a+\epsilon) \times X$, so the equivalence class of a contains $(a-\epsilon, a+\epsilon)$. \square
- Let V be a d-dimensional vector bundle over X. Claim: for some N there is a map $\alpha: \mathbb{R}^{N} \times X \rightarrow E V$ that is a linear surjection on each fibre.
- Proof: as before we can find open sets $U_{1}, \ldots, U_{n}, U_{1}^{\prime}, \ldots, U_{n}^{\prime}$ with $X=U_{1} \cup \cdots \cup U_{n}$ and $\overline{U_{i}} \subseteq U_{i}^{\prime}$ and U_{i}^{\prime} is even.
- As U_{i}^{\prime} is even and contains $\overline{U_{i}}$, we can choose an isomorphism $\alpha_{i}: \mathbb{R}^{d} \rightarrow V$ over $\overline{U_{i}}$, and then extend it to get a homomorphism $\alpha_{i}: \mathbb{R}^{d} \rightarrow V$ over all of X.
- Now define $\alpha: \mathbb{R}^{d n} \rightarrow V$ by $\alpha\left(u_{1}, \ldots, u_{n}\right)=\sum_{i} \alpha_{i}\left(u_{i}\right)$. Over $\overline{U_{i}}$ we know that α_{i} is iso so α is surjective. As $X=\bigcup_{i} U_{i}$ it follows that α is surjective everywhere. \square
- Corollary: there is a map $f: X \rightarrow G_{d}$ with $V \simeq f^{*}(T)$.
- Proof: Choose α as before, so $\alpha_{x}: P_{N}=\mathbb{R}^{N} \rightarrow V_{x}$ is a linear surjection. It follows that $\operatorname{dim}\left(\operatorname{ker}\left(\alpha_{x}\right)\right)=N-d$ and $\operatorname{dim}\left(\operatorname{ker}\left(\alpha_{x}\right)^{\perp}\right)=d$, so we can define $f: X \rightarrow G_{d N} \subset G_{d}$ by $f(x)=\operatorname{ker}\left(\alpha_{x}\right)^{\perp}$.
- It is easy to see that α_{x} restricts to give an isomorphism $\left(f^{*}(T)\right)_{x}=\operatorname{ker}\left(\alpha_{x}\right)^{\perp} \rightarrow V_{x}$, so $f^{*}(T) \simeq V . \square$

Classifying line bundles

- From now on everything is over \mathbb{C} by default.
- $\operatorname{Pic}(X)=\operatorname{Vect}_{1}(X)=\left[X, G_{1}\right]=\left[X, \mathbb{C} P^{\infty}\right]$
- This is a group with $[L][M]=[L \otimes M]$ and $1=[\mathbb{C}]$ and $[L]^{-1}=\left[L^{*}\right]=[\operatorname{Hom}(L, \mathbb{C})]$ (because $L \otimes L^{*} \simeq \mathbb{C}$).
- Recall $G_{1}=\mathbb{C} P^{\infty}=\{L<\mathbb{C}[t] \mid \operatorname{dim}(L)=1\}$.
- Multiplication $\mu: \mathbb{C}[t] \times \mathbb{C}[t] \rightarrow \mathbb{C}[t]$ induces $\mu: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ and then $\mu:\left[X, \mathbb{C} P^{\infty}\right] \times\left[X, \mathbb{C} P^{\infty}\right] \rightarrow\left[X, \mathbb{C} P^{\infty}\right]$. This is the same product operation as before.
- We have seen that $H^{*}\left(\mathbb{C} P^{n}\right)=\mathbb{Z}[x] / x^{n+1}$ with $x=e(T)$. It is also true that $H^{*}\left(\mathbb{C} P^{\infty}\right)=\mathbb{Z}[x]$ with $x=e(T)$.
- For a line bundle L over X we have $e(L) \in H^{2}(X)$. If $L \simeq f^{*}(T)$ for some $f: X \rightarrow \mathbb{C} P^{\infty}$ then $e(L)=e\left(f^{*}(T)\right)=f^{*}(e(T))=f^{*}(x)$.
- Note that $\mu^{*}(x) \in H^{2}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=\mathbb{Z}\{x \otimes 1,1 \otimes x\}$ and $\mu^{*}(x)$ restricts to x on $\mathbb{C} P^{\infty} \times\{1\}$ or $\{1\} \times \mathbb{C} P^{\infty}$.
- From this: $\mu^{*}(x)=x \otimes 1+1 \otimes x$, and then $e(L \otimes M)=e(L)+e(M)$.
- We now have a group homomorphism $e: \operatorname{Pic}(X) \rightarrow H^{2}(X)$. It can be shown that this is an isomorphism.
- Let V be a complex vector bundle of dimension d over X.
- Define $P V=\left\{(a, L) \mid a \in X, L \leq V_{a}, \operatorname{dim}(L)=1\right\}=\coprod_{a} P\left(V_{a}\right)$.
- This has a natural topology making it a fibre bundle over X, with fibres $P\left(V_{a}\right)$ homeomorphic to $\mathbb{C} P^{d-1}$.
- Define a tautological bundle T over $P V$ by $T_{(a, L)}=L$ or $E T=\left\{(a, L, v) \mid a \in X, L \leq V_{a}, \operatorname{dim}(L)=1, v \in V_{a}\right\}$.
- This gives an element $e(T) \in H^{2}(P V)$ which we also call x. Put $B=\left(1, x, \ldots, x^{d-1}\right)$.
- For $a \in X$ we have $i_{a}: P\left(V_{a}\right) \rightarrow P V$ with $i_{a}^{*}(T)=T$ and $i_{a}^{*}(x)=x \in H^{2}\left(P\left(V_{a}\right)\right)$ so $i_{a}^{*}(B)$ is a basis for $H^{*}\left(P\left(V_{a}\right)\right)$.
- By the fibre bundle theorem: B is a basis for $H^{*}(P V)$ over $H^{*}(X)$.
- Although $-x^{d}$ maps to zero on each fibre, it does not follow that $-x^{d}=0$.
- Instead: we can express $-x^{d}$ in terms of B, so there are unique elements $c_{i}(V) \in H^{2 i}(X)$ with $x^{d}+c_{1}(V) x^{d-1}+\cdots+c_{d-1}(V) x+c_{d}(V)=0$.
- We put $c_{0}(V)=1$ and $f_{V}(t)=\sum_{i=0}^{d} c_{i}(V) t^{d-i}$ so $f_{V}(x)=0$ and $H^{*}(P V) \simeq H^{*}(X)[t] / f_{V}(t)$.
- The $c_{i}(V)$ are Chern classes and $f_{V}(t)$ is the Chern polynomial.
- Consider complex vector spaces V, W. Suppose that $L \leq V \oplus W$ is one-dimensional and $L \not \leq W$. The projection $\pi: V \oplus W \rightarrow V$ gives an isomorphism $L \rightarrow \pi(L)$. Composing the inverse with $\pi^{\prime}: V \oplus W \rightarrow W$ gives $\alpha: \pi(L) \rightarrow W$.
- From this we get $P(V \oplus W) \backslash P(W) \simeq E(\operatorname{Hom}(T, W))$ and $P(V \oplus W) / P(W) \simeq P(V)^{\mathrm{Hom}(T, W)}$.
- This also works for vector bundles and projective bundles.
- This gives an LES relating $H^{*}(P(V \oplus W))$ and $H^{*}(P(W))$ and $\tilde{H}^{*}\left(P(V)^{\operatorname{Hom}(T, W)}\right) \simeq H^{*-2 \operatorname{dim}(W)}(P(V))$; similarly with V, W exchanged.
- Here $H^{*}(P(V \oplus W))=H^{*}(X)[t] / f_{V \oplus W}(t)$; similarly for $P(V)$ and $P(W)$.
- From this we can prove $f_{V \oplus W}(t)=f_{V}(t) f_{W}(t)$.
- Equivalently $c_{k}(V \oplus W)=\sum_{k=i+j} c_{i}(V) c_{j}(W)$.
- If $\operatorname{dim}(V)=d$ then $c_{d}(V)=(-1)^{d} e(V)$; so for line bundles $c_{1}(L)=-e(L)=e\left(L^{*}\right)$ and $f_{L}(t)=t-e(L)$.
- So if $V \simeq L_{1} \oplus \cdots \oplus L_{d}$ then $f_{V}(t)=\prod_{i}\left(t-e\left(L_{i}\right)\right)$.
- So if V is the constant bundle \mathbb{C}^{d} then $f_{V}(t)=t^{d}, c_{k}(V)=0$ for $k>0$.

Relations for flag manifolds

- Recall that $\operatorname{Flag}\left(\mathbb{C}^{n}\right)$ is the space of flags $W=\left(W_{0}<W_{1}<\cdots<W_{n}=\mathbb{C}^{n}\right)$ with $\operatorname{dim}\left(W_{i}\right)=i$.
- We have a line bundle L_{i} over Flag $\left(\mathbb{C}^{n}\right)$ with $\left(L_{i}\right) w=W_{i} / W_{i-1}$. This gives elements $x_{i}=e\left(L_{i}\right) \in H^{2}\left(\operatorname{Flag}\left(\mathbb{C}^{n}\right)\right)$ for $i=1, \ldots, n$, with $f_{L_{i}}(t)=t-x_{i}$.
- If we put $V=\oplus_{i} L_{i}$ we get $f_{V}(t)=\Pi_{i}\left(t-x_{i}\right)$, so $c_{k}(V)= \pm \sigma_{k}$, where σ_{k} is the k^{\prime} th elementary symmetric function of the variables x_{i}.
- The inner product gives a splitting $\mathbb{C}^{n}=W_{n} \simeq \bigoplus_{i=1}^{n}\left(W_{i} / W_{i-1}\right)$ so $V=\oplus_{i} L_{i} \simeq \mathbb{C}^{n}$ as bundles so $f_{V}(t)=t^{n}$.
- It follows that $\sigma_{k}=0$ for $1 \leq k \leq n$.
- In fact $\boldsymbol{H}^{*}\left(\operatorname{Flag}\left(\mathbb{C}^{n}\right)\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(\sigma_{1}, \ldots, \sigma_{n}\right)$; to be proved later.
- Example: $H^{*} \operatorname{Flag}\left(\mathbb{C}^{3}\right)=\mathbb{Z}[x, y, z] /(x+y+z, x y+x z+y z, x y z)$.
- First relation gives $z=-x-y$; substitute in other relations to get $x^{2}+x y+y^{2}=0, x^{2} y+x y^{2}=0$.
- Second relation now gives $y^{2}=-x^{2}-x y$; substitute in third to get $x^{3}=0$.
- Now $H^{*}=\mathbb{Z}[x, y, z] /\left(x^{3}=0, y^{2}=-x^{2}-x z, z=-x-y 0\right)=$ $\mathbb{Z}\left\{1, x, x^{3}, y, x y, x^{2} y\right\}$.

Milnor hypersurfaces revisited

- Recall that for $m \leq n$ we defined $H_{m, n}=\left\{([z],[w]) \in \mathbb{C} P^{m} \times \mathbb{C} P^{n} \mid \sum_{i=0}^{m} z_{i} w_{i}=0\right\}$.
- This has projections $\mathbb{C} P^{m} \stackrel{p}{\stackrel{p}{2}} \mathrm{H}_{m, n} \xrightarrow{q} \mathbb{C} P^{n}$ and we put $y=p^{*}(x), z=q^{*}(x) \in H^{2}\left(H_{m, n}\right)$.
- Define a bundle V over $\mathbb{C} P^{m}$ by $W_{[z]}=\left\{w \in \mathbb{C}^{n+1} \mid \sum_{i=0}^{m} z_{i} W_{i}=0\right\}$. Then $H_{m, n}=P V$ and so $H^{*}\left(H_{m, n}\right)=H^{*}\left(\mathbb{C} P^{n}\right)\left\{z^{j} \mid 0 \leq j<n\right\}=\mathbb{Z}[y, z] /\left(y^{m+1}, f_{\mathcal{V}}(z)\right)$.
- For $L \in \mathbb{C} P^{m}$ we define $\alpha_{L}: \mathbb{C}^{n+1} \rightarrow L^{*}$ by $\alpha(w)(v)=\sum_{i=0}^{m} w_{i} v_{i}$. This gives a surjective map $\alpha: \mathbb{C}^{n} \rightarrow T^{*}$ of vector bundles with $\operatorname{ker}(\alpha)=V$.
- Using the inner product we get $T^{*} \oplus V \simeq \mathbb{C}^{n+1}$ so $(t+y) f_{V}(t)=f_{T^{*}}(t) f_{V}(t)=f_{C^{n+1}}(t)=t^{n+1}$ in $\boldsymbol{H}^{*}\left(\mathbb{C} P^{m}\right)[t]=\mathbb{Z}[y, t] / y^{m+1}$.
- By long division we get $f_{v}(t)=t^{n}-y t^{n-1}+y^{2} t^{n-2}-\cdots \pm y^{m} t^{n-m}$. Thus in $H^{*}\left(H_{m, n}\right)$ we have $\sum_{i=0}^{m}(-1)^{i} y^{i} z^{n-i}=f_{v}(z)=0$.
- Put $\omega=e^{2 \pi i / n}$ and $C_{n}=\langle\omega\rangle<\mathbb{C}^{\times}$so C acts by multiplication on $S\left(\mathbb{C}^{d+1}\right)=S^{2 d+1}$. Put $M=S^{2 d+1} / C_{n}$ (a Lens space).
- Let $T=$ tautological bundle over $\mathbb{C} P^{d}$, so $e(T)=x$ and $e\left(T^{\otimes n}\right)=n x$.
- Define $\phi: S^{2 d+1} \rightarrow S\left(T^{\otimes n}\right)=\left\{(L, v) \mid L \in \mathbb{C} P^{d}, v \in L^{\otimes n},\|v\|=1\right\}$ by $\phi(u)=\left(\mathbb{C} u, u^{\otimes n}\right)$.
- Then ϕ is surjective and $\phi(u)=\phi\left(u^{\prime}\right)$ iff $u^{\prime}=\omega^{k} u$ for some k.
- Thus ϕ induces a homeomorphism $M=S^{2 d+1} / C_{n} \rightarrow S\left(T^{n}\right)$.
- This gives a Gysin sequence
$H^{k-2}\left(\mathbb{C} P^{d}\right) \xrightarrow{\times n x} H^{k}\left(\mathbb{C} P^{d}\right) \rightarrow H^{k}(M) \xrightarrow{\delta} H^{k-1}\left(\mathbb{C} P^{d}\right) \xrightarrow{\times n x} H^{k+1}\left(\mathbb{C} P^{d}\right)$.
- This gives a short exact sequence
$\mathbb{Z}[x] /\left(x^{d+1}, n x\right)=H^{*}\left(\mathbb{C} P^{d}\right) / n x \rightarrow H^{*}(M) \rightarrow \operatorname{ann}\left(n x, H^{*}\left(\mathbb{C} P^{d}\right)\right)=\mathbb{Z} . x^{d}$
- This gives $H^{*}(M)=\mathbb{Z}[x] /\left(x^{d+1}, n x\right) \oplus \mathbb{Z} v$ with $|v|=2 d+1=\operatorname{dim}(M)$
- Example: For $d=4$ we have $H^{*}(M)=\left(\mathbb{Z}, 0,(\mathbb{Z} / n) x, 0,(\mathbb{Z} / n) x^{2}, 0,(\mathbb{Z} / n) x^{3}, 0,(\mathbb{Z} / n) x^{4}, \mathbb{Z} v, 0,0, \ldots\right)$.

Ring structure of cohomology of flag bundles

- $\operatorname{Flag}_{1}(V)=P V$, so $H^{*}\left(\operatorname{Flag}_{1}(V)\right)=H^{*}(X)\left[x_{1}\right] / f_{V}\left(x_{1}\right)$.
- As $f_{V}\left(x_{1}\right)=0$, we have $f_{V}(t)=\left(t-x_{1}\right) g_{1}(t)$ for some monic $g_{1}(t) \in H^{*}\left(\operatorname{Flag}_{1}(V)\right)[t]$ of degree $d-1$.
- As $U_{0}=V=L_{1} \oplus U_{1}$ we have $f_{V}(t)=\left(t-x_{1}\right) f_{U_{1}}(t)$ so $g_{1}(t)=f_{U_{1}}(t)$.
- As $\operatorname{Flag}_{2}(V)=P\left(U_{1}\right)$ we have $H^{*}\left(\operatorname{Flag}_{2}(V)\right)=H^{*}\left(\operatorname{Fag}_{1}(V)\right)\left[x_{2}\right] / f_{U_{1}}\left(x_{2}\right)$.
- This is also $H^{*}(X)\left[x_{1}, x_{2}\right] /\left(g_{0}\left(x_{1}\right), g_{1}\left(x_{2}\right)\right)$, where $g_{0}(t)=f_{V}(t)$ and $g_{1}(t)=f_{V}(t) /\left(t-x_{1}\right)$.
- In general $H^{*}\left(\operatorname{Flag}_{k}(V)\right)=H^{*}(X)\left[x_{1}, \ldots, x_{k}\right] /\left(g_{i-1}\left(x_{i}\right) \mid 1 \leq i \leq k\right)$ where $g_{0}(t)=f_{V}(t)$ and $g_{i}(t)=g_{i-1}(t) /\left(t-x_{i}\right)$.
- Or: put $A=H^{*}(X)\left[x_{1}, \ldots, x_{k}\right]$ and $h(t)=\Pi\left(t-x_{i}\right) \in A[t]$.

By long division: $f_{\vee}(t)=h(t) q(t)+r(t)$ with $\operatorname{deg}(r(t))<k$.

- Now $r(t)=m_{0}+m_{1} t+\cdots+m_{k-1} t^{k-1}$ with $m_{i} \in A$, and $H^{*}\left(\operatorname{Flag}_{k}(V)\right)=A /\left(m_{0}, \ldots, m_{k-1}\right)$, so $f_{V}(t)=h(t) q(t)$ in $H^{*}\left(\operatorname{Fag}_{k}(V)\right)[t]$.
- Let V be a d-dimensional complex vector bundle over X.
- Put $\operatorname{Flag}_{k}(V)=\left\{\left(x, W_{0}<W_{1}<\cdots<W_{k} \leq V_{x}\right) \mid \operatorname{dim}\left(W_{i}\right)=i\right\}$.
- Over $\mathrm{Flag}_{k}(V)$ we have line bundles L_{1}, \ldots, L_{k} with fibres $\left(L_{i}\right)_{(x, W)}=W_{i} / W_{i-1}$ and also a vector bundle U_{k} with $\left(U_{k}\right)_{(x, W)}=V_{x} / W_{k}$
- We put $x_{i}=e\left(L_{i}\right) \in H^{2}\left(\operatorname{Flag}_{k}(V)\right)$.
- Note that $L_{1} \oplus \cdots \oplus L_{k} \oplus U_{k} \simeq \pi^{*}(V)$ so $f_{V}(t)=f_{U_{k}}(t) \prod_{i=1}^{k}\left(t-x_{i}\right)$ in $H^{*}\left(\operatorname{Flag}_{k}(V)\right)[t]$.
- A point of $P\left(U_{k-1}\right)$ consists of a point $(x, W)=\left(x, W_{0}<\cdots<W_{k-1}\right) \in \operatorname{Flag}_{k-1}(V)$ together with a one-dimensional subspace $M \leq\left(U_{k-1}\right)_{(x, W)}=V_{x} / W_{k-1}$. This must have the form $M=W_{k} / W_{k-1}$ for a unique W_{k} with $W_{k-1}<W_{k} \leq V_{x}$ and $\operatorname{dim}\left(W_{k}\right)=k$. Thus $\operatorname{Flag}_{k}(V)=P\left(U_{k-1}\right)$.
- By the Projective Bundle Theorem: $H^{*}\left(\operatorname{Flag}_{k}(V)\right)=H^{*}\left(\operatorname{Flag}_{k-1}(V)\right)\left\{x_{k}^{i} \mid 0 \leq i \leq d-k\right\}$.
- By induction: monomials $x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}$ with $0 \leq i_{t} \leq d-t$ give a basis for $H^{*}\left(\operatorname{Flag}_{k}(V)\right)$ over $H^{*}(X)$.
- In particular: these monomials give a basis for $H^{*}\left(\operatorname{Flag}_{k}\left(\mathbb{C}^{d}\right)\right)$ over \mathbb{Z}.

