MAGIC064 Algebraic Topology

March 16, 2023

Some theorems

- ▶ If $n \neq m$ then \mathbb{R}^n is not homeomorphic to \mathbb{R}^m .
- Put

 $SO_3 = \{3 \times 3 \text{ rotation matrices}\} = \{A \in M_3(\mathbb{R}) \mid AA^T = I, \text{ det}(A) = 1\}$ $P = \{\text{trace 1 projectors in } \mathbb{R}^4\} = \{A \in M_4(\mathbb{R}) \mid A^T = A^2 = A, \text{ trace}(A) = 1\}$ $S^3 = \text{the 3-sphere} = \{x \in \mathbb{R}^4 \mid x_0^2 + x_1^2 + x_2^2 + x_3^2 = 1\}$ $\mathbb{R}P^3 = S^3/\sim \quad \text{where } u \sim v \text{ iff } v = \pm u$

Then SO_3 , P and $\mathbb{R}P^3$ are homeomorphic to each other but not to S^3 .

- ▶ The Fundamental Theorem of Algebra: if $f(z) \in \mathbb{C}[z]$ is a nonconstant polynomial, then it has a root.
- The Brouwer Fixed Point Theorem: if f: [0,1]ⁿ → [0,1]ⁿ is continuous, then there is a fixed point x ∈ [0,1]ⁿ with f(x) = x.
- ▶ The Borsuk-Ulam Theorem: if n > m then there is no continuous map $f: S^n \to S^m$ with f(-x) = -f(x) for all $x \in S^n$.

A key method for proving these results is the theory of cohomology rings.

Cohomology

For each space X, one can define a cohomology ring $H^*(X)$. For the moment, we will just list some properties of these rings (Eilenberg-Steenrod axioms).

- H^{*}(X) is a graded ring. For each integer j ≥ 0 we have an abelian group H^j(X), and any pair of elements a ∈ H^j(X) and b ∈ H^k(X) have a product ab ∈ H^{j+k}(X). This multiplication is associative and distributes over addition. It is commutative in the graded sense: ba = (-1)^{jk}ab. (We also put H^j(X) = 0 for j < 0.)
- 2. $H^*(X)$ is contravariantly functorial in X: for any continuous map $f: X \to Y$ we have a ring homomorphism $f^*: H^*(Y) \to H^*(X)$. If we have another map $g: Y \to Z$ then $(gf)^* = f^*g^*: H^*(Z) \to H^*(X)$; also $1^*_X = 1_{H^*(X)}$.
- 3. $H^*(X)$ is homotopy invariant: given a continuous family of maps $f_t: X \to Y$ (for $0 \le t \le 1$) we have $f_0^* = f_1^*: H^*(Y) \to H^*(X)$. (The family is a *homotopy*; the maps f_0 and f_1 are *homotopic*.)
- 4. $H^*(\text{point}) = H^0(\text{point}) = \mathbb{Z}$.
- 5. Excision and Mayer-Vietoris axioms (explained later).

These properties characterise $H^*(X)$ uniquely.

Examples of cohomology rings

Example

 $H^*(S^n)$ is the free abelian group generated by $1 \in H^0(S^n)$ and an element $u_n \in H^n(S^n)$. The ring structure is given by $u_n^2 = 0$ (if n > 0).

Example

Suppose we have distinct points $a_1, \ldots, a_n \in \mathbb{C}$ and put $M = \mathbb{C} \setminus \{a_1, \ldots, a_n\}$. Define $f_i \colon M \to S^1$ by $f_i(z) = (z - a_i)/|z - a_i|$ and put $v_i = f_i^*(u_1)$. Then $H^*(M)$ is the free abelian group generated by $1 \in H^0M$ and $v_1, \ldots, v_m \in H^1M$. The ring structure is given by $v_i v_j = 0$ for all i, j.

Example

Put $F_n\mathbb{C} = \{z \in \mathbb{C}^n \mid z_i \neq z_j \text{ for } i \neq j\}$. Given $i \neq j \in \{1, \ldots, n\}$ we define $f_{ij} \colon F_n\mathbb{C} \to S^1$ by $f_{ij}(z) = (z_i - z_j)/|z_i - z_j|$, and put $a_{ij} = f_{ij}^{**} u_1$. Then $H^*(F_n\mathbb{C})$ is freely generated by the elements a_{ij} modulo relations $a_{ij} = a_{ji}$ and $a_{ij}^2 = 0$ and $a_{ij}a_{jk} + a_{jk}a_{ki} + a_{ki}a_{ij} = 0$ for all i, j, k. One can also give a basis for this ring as a free abelian group.

The group $H^0(X)$

- The points of a space X can be grouped into path components, where x and y lie in the same path component iff there is a continuous path s: [0,1] → X with s(0) = x and s(1) = y.
- We write $\pi_0(X)$ for the set of path components in X.
- We write Map(π₀(X), ℤ) for the set of functions from π₀(X) to ℤ. This is a ring under pointwise addition and multiplication. For example, if X has three path components, then Map(π₀(X), ℤ) ≃ ℤ × ℤ × ℤ.
- It works out that H⁰(X) is always isomorphic to Map(π₀(X), ℤ). For example, in the common case where X is path-connected, we just have H⁰(X) = ℤ.
- If X has the discrete topology, then π₀(X) = X so H⁰(X) = Map(X, ℤ). In this case it can be shown that Hⁿ(X) = 0 for all n ≠ 0.

Steps to define $H^*(X)$

We will

- Define what we mean by a cochain complex
- Define what we mean by a graded ring
- Define what we mean by a *differential graded ring*: a cochain complex with compatible graded ring structure
- Define the cohomology of a cochain complex, and show that the cohomology of a DGR is a graded ring
- For each topological space X define a differential graded ring C*(X), called the singular cochain complex of X
- Define $H^*(X)$ to be the cohomology of $C^*(X)$.

Cochain complexes and differential graded rings

A cochain complex is a system of abelian groups Uⁱ (for i ∈ Z) equipped with homomorphisms d: Uⁱ → Uⁱ⁺¹ such that each composite

$$U^{i-1} \xrightarrow{d} U^i \xrightarrow{d} U^{i+1}$$

is zero (or more briefly, $d^2 = 0$). In almost all cases we will have $U^i = 0$ for i < 0.

▶ A differential graded ring is a cochain complex A^* together with an element $1 \in A^0$ and a multiplication rule giving $ab \in A^{i+j}$ for all $a \in A^i$ and $b \in A^j$, such that:

$$1a = a = a1 \text{ for all } a \in A^{i}$$
$$a(bc) = (ab)c \text{ for all } a \in A^{i}, \ b \in A^{j}, \ c \in A^{k}$$
$$a(b+c) = ab + ac \text{ for all } a \in A^{i}, \ b, c \in A^{j}$$
$$(a+b)c = ac + bc \text{ for all } a, b \in A^{i}, \ c \in A^{j}$$
$$d(1) = 0$$
$$d(ab) = d(a)b + (-1)^{i}ad(b) \text{ for all } a \in A^{i}, \ b \in A^{j}.$$

The last relation is called the Leibniz rule.

Cohomology of a cochain complex

▶ Let A^* be a cochain complex. For $i \in \mathbb{Z}$ we put

 $\begin{aligned} & Z^{i}(A^{*}) = \ker(d \colon A^{i} \to A^{i+1}) \leq A^{i} & \text{(group of cocycles)} \\ & B^{i}(A^{*}) = \operatorname{img}(d \colon A^{i-1} \to A^{i}) \leq A^{i} & \text{(group of coboundaries)} \end{aligned}$

- As d² = 0 we have d(Bⁱ(A*)) = 0 and so Bⁱ(A*) ≤ Zⁱ(A*). It is therefore meaningful to define Hⁱ(A*) = Zⁱ(A*)/Bⁱ(A*). Elements of Hⁱ(X) are cosets [z] = z + Bⁱ(X), called *cohomology classes*.
- If A^* is clear from the context, we will just write Z^i , B^i and H^i instead of $Z^i(A^*)$, $B^i(A^*)$ and $H^i(A^*)$.
- We write Z^* for the sequence of groups Z^i , and similarly for B^* and H^* .
- ▶ Now let A^* be a DGR. Using the Leibniz rule $d(ab) = d(a)b \pm a d(b)$ we find that Z^* is a subring of A^* and that B^* is an ideal in Z^* .
- It follows that H^{*}(A^{*}) has an induced ring structure with [z][w] = [zw] for z ∈ Zⁿ and w ∈ Z^m.
- ► Example: $A^* = \mathbb{Z}[x] \oplus \mathbb{Z}[x]a$ with d(a) = x so $d(x^n) = 0$, $d(x^n a) = x^{n+1}$. $1 \xrightarrow{0} a \longmapsto x \xrightarrow{0} xa \longmapsto x^2 \xrightarrow{0} x^2 a \longmapsto x^3$

 $Z^{2k+1} = B^{2k+1} = 0$ and $Z^{2k} = B^{2k} = \mathbb{Z}x^k$ except $Z^0 = \mathbb{Z}$ and $B^0 = 0$. Thus $H^0(A^*) = \mathbb{Z}$ and $H^n(A^*) = 0$ for $n \neq 0$. The standard n-simplex is the space

$$\Delta^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid x_i \ge 0 \text{ for all } i \text{ and } \sum_i x_i = 1\}$$

The vertices of Δ_n are just the standard basis vectors e_0, \ldots, e_n , so $e_0 = (1, 0, \ldots, 0)$ and $e_1 = (0, 1, 0, \ldots, 0)$ and $e_n = (0, \ldots, 0, 1)$.

• Δ^0 is a point, Δ^1 is an interval, Δ^2 is a triangle, Δ^3 is a tetrahedron.

- ▶ We always identify $(1 t, t) \in \Delta^1$ with $t \in [0, 1]$, so $e_0 \sim 0$ and $e_1 \sim 1$.
- ▶ We define $S_k(X) = \text{Cont}(\Delta^k, X)$, the set of continuous maps $\Delta^k \to X$. As $\Delta^0 = \text{point}$ we can identify $S_0(X)$ with X.

As $\Delta^1 = [0, 1]$ we can identify $S_1(X)$ with the set of paths in X. Loosely: $S_2(X)$ is the set of triangles in X.

Zeroth cohomology

- ► $H^0(X) = Z^0(X)/B^0(X)$.
- ▶ $B^{0}(X) = \operatorname{img}(d = 0: C^{-1}(X) = 0 \to C^{0}(X)),$ so $B^{0}(X) = 0$, so $H^{0}(X) = Z^{0}(X).$
- ▶ $Z^0(X) = \ker(d: C^0(X) \to C^1(X)) = \{f \in \operatorname{Map}(X, \mathbb{Z}) \mid d(f) = 0\}.$
- ▶ For a path $u: [0,1] \to X$ we have d(f)(u) = f(u(1)) f(u(0)), so d(f) = 0 iff f(u(1)) = f(u(0)) for all paths u.
- ▶ In other words, $H^0(X) = Z^0(X)$ is the set of maps $f: X \to \mathbb{Z}$ such that f(x) = f(y) whenever x and y can be connected by a path in X.
- ▶ In other words, $H^0(X)$ is the set of maps $f: X \to \mathbb{Z}$ that are constant on each path component.
- Thus, if $\pi_0(X)$ is the set of path components, then $H^0(X) = Map(\pi_0(X), \mathbb{Z}).$
- X is path connected if it is nonempty and any two points can be joined by a path. If so, then |π₀(X)| = 1 and H⁰(X) is just the set of constant functions X → Z so H⁰(X) ≃ Z.

Singular cochains

- ▶ Define $C^k(X) = Map(S_k(X), \mathbb{Z})$ (the set of all functions from $S_k(X)$ to \mathbb{Z}).
- S₀(X) = X so C⁰(X) = Map(X, Z) (the set of all maps X → Z, no continuity requirement) (This is a commutative ring under pointwise addition and multiplication)
- $S_1(X)$ is the set of paths in X, so $C^1(X)$ is the set of functions from paths to integers.
- ▶ We define $d: C^0(X) \to C^1(X)$ by d(f)(u) = f(u(1)) f(u(0)) for $f \in C^0(X)$ and $u: [0, 1] \to X$.
- More detail:
 - $f \in C^0(X)$ so $f: X \to \mathbb{Z}$.
 - ▶ We need to define $d(f) \in C^1(X) = Map(S_1(X), \mathbb{Z})$, so for $u \in S_1(X)$ we need to define $d(f)(u) \in \mathbb{Z}$.
 - Here $u: [0,1] \rightarrow X$ so $u(0), u(1) \in X$.
 - ▶ As $f: X \to \mathbb{Z}$ we have $f(u(0)), f(u(1)) \in \mathbb{Z}$. ▶ We put d(f)(u) = f(u(1)) - f(u(0)).
 - We put a(1)(u) = 1(u(1)) 1(u(0))
- For k < 0 we define $S_k(X) = \emptyset$ and $C^k(X) = 0$ and $d = 0: C^k(X) \rightarrow C^{k+1}(X)$.
- We will define $d: C^k(X) \to C^{k+1}(X)$ for k > 0 later.

Face maps

For $0 \le i \le n$ we define $\delta_i \colon \Delta_{n-1} \to \Delta_n$ by inserting 0 in position *i*:

$$\delta_i(t_0,\ldots,t_{n-1}) = (t_0,\ldots,t_{i-1},0,t_i,\ldots,t_{n-1}).$$

- This is the inclusion of the face opposite e_i.
- ► For *n* = 2:

 $\delta_0(t_0, t_1) = (0, t_0, t_1)$ $\delta_1(t_0, t_1) = (t_0, 0, t_1)$ $\delta_2(t_0, t_1) = (t_0, t_1, 0)$

For n = 1: the maps $\delta_0, \delta_1 \colon \Delta^0 = \{e_0\} \to \Delta^1$ are given by $\delta_0(e_0) = e_1$ and $\delta_1(e_0) = e_0$.

We define $d \colon C^k(X) \to C^{k+1}(X)$ by

$$d(f)(v)=\sum_{i=0}^{k+1}(-1)^if(v\circ\delta_i).$$

In more detail:

- ▶ f is assumed to be an element of the group $C^k(X) = Map(S_k(X), \mathbb{Z})$, so for each $u \in S_k(X)$ we have an integer f(u).
- ▶ d(f) is supposed to be an element of the group $C^{k+1}(X) = \operatorname{Map}(S_{k+1}(X), \mathbb{Z})$, so for each element $v \in S_{k+1}(X)$ we need to define the element $d(f)(v) \in \mathbb{Z}$.
- So suppose we have v ∈ S_{k+1}(X), i.e. v is a continuous map Δ^{k+1} → X. For 0 ≤ i ≤ k + 1 we have a face map δ_i: Δ_k → Δ_{k+1}, which we can compose with v to get a continuous map v ∘ δ_i: Δ^k → X, or in other words an element v ∘ δ_i ∈ S_k(X). As f: S_k(X) → Z, we therefore have an integer f(v ∘ δ_i) ∈ Z.
- ▶ We define d(f)(v) to be the alternating sum of the above integers, i.e. $d(f)(v) = \sum_{i=0}^{k+1} (-1)^i f(v \circ \delta_i).$

Cohomology of discrete spaces

- Claim: if X is discrete then $H^0(X) = Map(X, \mathbb{Z})$ but $H^k(X) = 0$ for $k \neq 0$.
- Put A = Map(X, ℤ). As X is discrete, any continuous map u: Δ_k → X is constant, so S_k(X) ≃ X and C^k(X) = Map(S_k(X), ℤ) ≃ A.
- ▶ If $u: \Delta_{k+1} \to X$ is constant with value x, then $u \circ \delta_i: \Delta_k \to X$ is also constant, with the same value.
- ▶ The formula for $d: C^k(X) = A \rightarrow A = C^{k+1}(X)$ just becomes

$$d(f)(x) = \sum_{i=0}^{k+1} (-1)^i f(x)$$

- If k is even: all terms cancel out in pairs, giving d(f)(x) = 0.
 If k is odd: there is one term left over, giving d(f)(x) = f(x).
- ▶ Thus, the full sequence of groups $C^{k}(X)$ and homomorphisms d looks like

$$\cdots \rightarrow 0 \rightarrow 0 \rightarrow C^{0}(X) = A \xrightarrow{0} A \xrightarrow{1} A \xrightarrow{0} A \xrightarrow{1} A \rightarrow \cdots$$

- For k < 0 we have $Z^k = B^k = C^k(X) = 0$ so $H^k(0) = 0$.
- ▶ $Z^0 = A$ but $B^0 = 0$ so $H^0(X) = Z^0/B^0 = A/0 = A = Map(X, \mathbb{Z})$.
- For k > 0, if k is even we have $Z^k = B^k = A$ and if k is odd we have $Z^k = B^k = 0$. In both cases we have $Z^k = B^k$ so $H^k(X) = Z^k/B^k = 0$.

The face relation

- Claim: If $0 \le j \le i \le k$ then $\delta_j \delta_i = \delta_{i+1} \delta_j \colon \Delta^{k-1} \to \Delta^k \to \Delta^{k+1}$.
- Example: $\delta_2 \delta_3 = \delta_4 \delta_2 \colon \Delta^2 \to \Delta^4$:
- Claim: the composite $C^{k-1}(X) \xrightarrow{d} C^k(X) \xrightarrow{d} C^{k+1}(X)$ is zero.
- ▶ By definition, for $f \in C^{k-1}(X)$ and $u \in S_{k+1}(X)$ we have

$$d^2(f)(u) = \sum_{j=0}^{k+1} (-1)^i d(f)(u\delta_j) = \sum_{j=0}^{k+1} \sum_{i=0}^k (-1)^{i+j} f(u\delta_j\delta_i).$$

The relation $\delta_j \delta_i = \delta_{i+1} \delta_j$ shows that some terms are the same. The +1 ensures that matching terms have opposite signs and so cancel. With more care we can see that there is nothing left, so $d^2(f)(u) = 0$.

▶ Thus: $C^*(X)$ is a cochain complex, and we can define $Z^k(X) = \ker(d: C^k(X) \to C^{k+1}(X))$ and $B^k(X) = \operatorname{img}(d: C^{k-1}(X) \to C^k(X))$ and $H^k(X) = Z^k(X)/B^k(X)$.

The cup product

- Given $f \in C^n(X)$ and $g \in C^m(X)$ we need to define $fg \in C^{n+m}(X)$.
- ► Here $C^{n+m}(X) = Map(S_{n+m}(X), \mathbb{Z})$ and $S_{n+m}(X)$ is the set of continuous maps $w : \Delta^{n+m} \to X$, so for each such w we must define $(fg)(w) \in \mathbb{Z}$.
- $\blacktriangleright \text{ Define } \Delta^n \xrightarrow{\lambda} \Delta^{n+m} \xleftarrow{\rho} \Delta^m \text{ by }$

 $\lambda(x_0,\ldots,x_n)=(x_0,\ldots,x_n,0,\ldots,0) \qquad \rho(y_0,\ldots,y_m)=(0,\ldots,0,y_0,\ldots,y_m).$

- Now $w\lambda \colon \Delta_n \to X$ so $w\lambda \in S_n(X)$ so $f(w\lambda) \in \mathbb{Z}$.
- Also $w\rho: \Delta_m \to X$ so $w\rho \in S_m(X)$ so $g(w\rho) \in \mathbb{Z}$.
- We define $(fg)(w) = f(w\lambda)g(w\rho) \in \mathbb{Z}$.
- ▶ We also define $1 \in C^0(X) = Map(X, \mathbb{Z})$ to be constant with value 1.
- ▶ These definitions make $C^*(X)$ into a differential graded ring: multiplication is distributive and associative with 1 as a two-sided unit, and d(1) = 0, and $d(fg) = d(f)g + (-1)^n f d(g)$.
- ▶ The proof is an exercise.
- As discussed previously, there is an induced ring structure on $H^*(X)$.
- H*(X) is graded-commutative even though C*(X) is not.
 The proof is harder, to be discussed later.

Functoriality

- A cochain map between cochain complexes U^{*} and V^{*} is a system of homomorphisms φ: Uⁿ → Vⁿ with dφ = φd: Uⁿ → Vⁿ⁺¹.
- For such ϕ , we see that $\phi(Z^n(U^*)) \leq Z^n(V^*)$ and $\phi(B^n(U^*)) \leq B^n(V^*)$ so we have an induced homomorphism $H^n(\phi): H^n(U^*) \to H^n(V^*)$.
- This is functorial: Hⁿ(1) = 1 and Hⁿ(ψφ) = Hⁿ(ψ)Hⁿ(φ) for cochain maps U^{*} → V^{*} → W^{*}.
- If U^{*} and V^{*} are DGRs: a DGR morphism is a cochain map that also preserves products. For such φ, the induced map H^{*}(φ): H^{*}(U^{*}) → H^{*}(V^{*}) is a graded ring homomorphism.
- Now let $p: X \to Y$ be a continuous map. For $f \in C^n(Y)$ and $u \in S_n(X) = \operatorname{Cont}(\Delta^n, X)$ we have $pu \in \operatorname{Cont}(\Delta^n, Y) = S_n(Y)$ and so $f(pu) \in \mathbb{Z}$. We define $p^*(f) \in C^n(X)$ by $p^*(f)(u) = f(pu)$.
- Using $p \circ (u \circ \delta_i) = (p \circ u) \circ \delta_i$, we see that $p^*(d(f)) = d(p^*(f))$ in $C^{n+1}(X)$. Thus, p^* is a cochain map.
- Using p ∘ (w ∘ λ) = (p ∘ w) ∘ λ and p ∘ (w ∘ ρ) = (p ∘ w) ∘ ρ, we see that p*(fg) = p*(f)p*(g) in C^{n+m}(X). Thus, p* is a morphism of DGRs, and so induces a graded ring homomorphism H*(Y) → H*(X), which we also call p*.

Topological homotopy

- ▶ Homotopy is compatible with composition. In detail, if $X \xrightarrow{f_0, f_1} Y \xrightarrow{g_0, g_1} Z$ and we have homotopies $F : f_0 \simeq f_1$ and $G : g_0 \simeq g_1$, then we can define $K : g_0 f_0 \simeq g_1 f_1$ by K(t, x) = G(t, F(t, x)).
- We write $[X, Y] = Cont(X, Y) / \simeq$ for the set of homotopy classes.
- ▶ Example: for $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$, every $f : S^1 \to S^1$ is homotopic to $p_n(z) = z^n$ for a unique $n \in \mathbb{Z}$, so $[S^1, S^1] \simeq \mathbb{Z}$.
- ► There is a well-defined composition [Y, Z] × [X, Y] → [X, Z] and thus a category hTop of spaces and homotopy classes of maps.
- Maps X → Y → Z are homotopy inverse if gf ≃ 1_X and fg ≃ 1_Y, i.e. [g] is inverse to [f] in hTop.
- Say f: X → Y is a homotopy equivalence if it has a homotopy inverse, i.e. it becomes an isomorphism in hTop.
- Say X and Y are *homotopy equivalent* if there is a homotopy equivalence $f: X \to Y$, i.e. $X \simeq Y$ in hTop.
- Example: define Sⁿ⁻¹ → Rⁿ \ {0} → Sⁿ⁻¹ by i(x) = x and r(y) = y/||y||. Define F: [0,1] × (Rⁿ \ {0}) → Rⁿ \ {0} by F(t,y) = ||y||^{-t}y. Then pi = 1 and F: 1 ≃ ip so i and p are mutually inverse homotopy equivalences, and Sⁿ⁻¹ and Rⁿ \ {0} are homotopy equivalent spaces.

Topological homotopy

- A homotopy between continuous maps $f_0, f_1: X \to Y$ is a continuous map $F: [0,1] \times X \to Y$ with $F(0,x) = f_0(x)$ and $F(1,x) = f_1(x)$ for all $x \in X$.
- We say that f_0 and f_1 are *homotopic* if such a homotopy exists.
- ► Exercise: this is an equivalence relation (written f₀ ≃ f₁). Key point: given homotopies F₀: f₀ ≃ f₁ and F₁: f₁ ≃ f₂ we can put

$$F(t,x) = \begin{cases} F_0(2t,x) & \text{if } 0 \le t \le \frac{1}{2} \\ F_1(2t-1,x) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

- Example: we can define $f: S^n \to S^n$ by f(x) = -x. If n = 2m - 1 then $S^n = \{z \in \mathbb{C}^m \mid ||z|| = 1\}$ and we can define $F: 1_{S^n} \simeq f$ by $F(t, z) = e^{\pi i t} z$. If *n* is even then cohomology shows that $1_{S^n} \simeq f$.
- We can define $p_n: S^1 = \{z \in \mathbb{C} \mid |z| = 1\} \rightarrow S^1$ by $p_n(z) = z^n$. Fact: any $f: S^1 \rightarrow S^1$ is homotopic to p_n for a unique n.
- ► $F(t,x) = (1-t)f_0(x) + t f_1(x)$ gives a linear homotopy $f_0 \simeq f_1$ only if $Y \subseteq \mathbb{R}^N$ and the line segment from $f_0(x)$ to $f_1(x)$ is always contained in Y.
- Say $Y \subseteq \mathbb{R}^N$ is convex if $Y \neq \emptyset$ and every segment with endpoints in Y is contained in Y. If so, all maps $X \to Y$ are homotopic.

Contractible spaces

- Say X is *contractible* iff it is homotopy equivalent to $1 = \{0\}$.
- ▶ Exercise: X is contractible iff $X \neq \emptyset$ and 1: $X \rightarrow X$ is homotopic to a constant map.
- Exercise: any contractible space is path-connected.
- ► Example: any convex subset of R^N is contractible, and any space homeomorphic to a contractible space is contractible.

- ▶ The following spaces are convex and so contractible: \mathbb{R}^n , B^n , Δ^n , $[0,1]^n$.
- Slogan: in homotopy theory, a contractible space of choices is as good as a unique choice.

- Let $\phi, \phi' : U^* \to V^*$ be cochain maps. A *chain homotopy* from ϕ to ϕ' is a system of homomorphisms $\sigma : U^n \to V^{n-1}$ with $d\sigma + \sigma d = \phi' \phi$. We say that ϕ and ϕ' are *chain homotopic* if such a chain homotopy exists.
- Exercise: this is an equivalence relation (written $\phi \simeq \phi'$).
- Exercise: this relation is compatible with composition: If $U^* \xrightarrow{\phi, \phi'} V^* \xrightarrow{\psi, \psi'} W^*$ and $\sigma \colon \phi \simeq \phi'$ and $\tau \colon \psi \simeq \psi'$ then $\psi \sigma + \tau \phi' \colon \psi \phi \simeq \psi' \phi'$.
- Claim: if $\sigma: \phi \simeq \phi'$ then $H^*(\phi) = H^*(\phi'): H^*(U^*) \to H^*(V^*).$
- Proof: consider an element $z \in Z^n(U^*)$ (so d(z) = 0). Then $H^n(\phi')([z]) H^n(\phi)([z]) = [\phi'(z)] [\phi(z)] = [(\phi' \phi)(z)] = [d(\sigma(z)) + \sigma(d(z))] = [d(\cdot) + 0] = 0.$
- ▶ Proposition: a topological homotopy $F : [0,1] \times X \to Y$ from f_0 to f_1 gives a chain homotopy between $f_0^*, f_1^* : C^*(Y) \to C^*(X)$, so $f_0^* = f_1^* : H^*(Y) \to H^*(X)$.
- ► Core of proof: divide $[0,1] \times \Delta^n$ into copies of Δ^{n+1} , and think about the boundary of this space.
- Corollary: if X is homotopy equivalent to Y, then $H^*(X) \simeq H^*(Y)$.
- Example: if X is contractible then $H^n(X) = 0$ except $H^0(X) = \mathbb{Z}$.

The Mayer-Vietoris context

- Consider a space X with open subsets $U, V \subseteq X$.
- ▶ How are $H^*(U)$, $H^*(V)$, $H^*(U \cup V)$ and $H^*(U \cap V)$ related?

$$\begin{array}{cccc} U \cap V & \stackrel{i}{\longrightarrow} & U & & H^*(U \cap V) \xleftarrow{i^*} & H^*(U) \\ \downarrow & & \downarrow_k & & \downarrow_k^* \\ V & \stackrel{i}{\longrightarrow} & U \cup V & & H^*(V) \xleftarrow{i^*} & H^*(U \cup V) \end{array}$$

$$H^{n-1}(U \cap V) \xrightarrow{\delta} H^n(U \cup V) \xrightarrow{\left[\begin{smallmatrix} k^* \\ l^* \end{smallmatrix}\right]} H^n(U) \times H^n(V) \xrightarrow{\left[i^* - j^* \right]} H^n(U \cap V) \xrightarrow{\delta} H^{n+1}(U \cup V)$$

There is a non-obvious map δ extending the diagram as shown, and this makes the sequence exact, i.e. the image of each map is the kernel of the next.

Also: we have a ring map $\alpha = (ki)^* = (lj)^*$: $H^*(U \cup V) \to H^*(U \cap V)$, and $\delta(\alpha(a)b) = (-1)^n a \, \delta(b)$ for $a \in H^n(U \cup V)$ and $b \in H^m(U \cap V)$.

Exact sequences

- A sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is *exact* if $img(\alpha) = ker(\beta)$ (implies $\beta \alpha = 0$)
- The sequence is *short exact* if also α is injective and β is surjective.
- $A \xrightarrow{\alpha} B \xrightarrow{0} C$ is exact iff α is surjective; so $A \xrightarrow{\alpha} B \rightarrow 0$ is exact iff α is surjective.
- $A \xrightarrow{0} B \xrightarrow{\beta} C$ is exact iff β is injective; so
- $0 \rightarrow B \xrightarrow{\beta} C$ is exact iff β is injective.
- $A \xrightarrow{0} B \xrightarrow{\beta} C \xrightarrow{0} D$ is exact iff β is an isomorphism; so
- $0 \rightarrow B \xrightarrow{\beta} C \rightarrow 0$ is exact iff β is an isomorphism.
- $A \xrightarrow{0} B \xrightarrow{0} C$ is exact iff B = 0; so $0 \to B \to 0$ is exact iff B = 0.
- A cochain complex $U^* = (\dots \rightarrow U^{-2} \rightarrow U^{-1} \rightarrow U^0 \rightarrow U^1 \rightarrow U^2 \rightarrow \dots)$ is exact iff $H^*(U^*) = 0$.
- Split short exact sequence:
 - $A \xrightarrow{i} A \oplus B \xrightarrow{p} B$ with i(a) = (a, 0) and p(a, b) = b.
- There is a short exact sequence Z/n → Z/nm → Z/m with i(a (mod n)) = am (mod nm) and p(a (mod nm)) = a (mod m). This is split iff n and m are coprime.
- ▶ For $N \leq M$, $N \xrightarrow{\text{inc}} M \xrightarrow{\text{proj}} M/N$ is short exact.
- If $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is short exact then $A \simeq \alpha(A) \leq B$ and $B/\alpha(A) \simeq C$ so |B| = |A||B|.

The Snake Lemma

- ► Let $U^* \xrightarrow{i} V^* \xrightarrow{p} W^*$ be a SES of cochain complexes and chain maps (so $d^2 = 0$; di = id and dp = pd; img(i) = ker(p); *i* injective, *p* surjective)
- Claim: there are maps $\delta \colon H^n(W^*) \to H^{n+1}(U^*)$ giving an exact sequence

 $\cdots \to H^{n-1}(W^*) \xrightarrow{\delta} H^n(U^*) \xrightarrow{i_*} H^n(V^*) \xrightarrow{p_*} H^n(W^*) \xrightarrow{\delta} H^{n+1}(U^*) \to \cdots$

- $\blacktriangleright \text{ Idea: } \delta = i^{-1}dp^{-1} = (H^n(W^*) \xrightarrow{p^{-1}} V^n \xrightarrow{d} V^{n+1} \xrightarrow{i^{-1}} H^{n+1}(U^*))$
- ▶ Definition: a snake is (c, w, v, u, a) where (1) $c \in H^n(W^*)$; (2) $w \in Z^n(W^*)$ with c = [w]; (3) $v \in V^n$ with p(v) = w; (4) $u \in Z^{n+1}(U^*)$ with i(u) = d(v); (5) $a = [u] \in H^{n+1}(U^*)$.
- ▶ Idea: v is a choice of $p^{-1}(c)$, a is a choice of $i^{-1}(d(v)) = i^{-1}(d(p^{-1}(c)))$.
- ▶ Claim: for $c \in H^n(W^*)$, there is a snake (c, w, v, u, a) starting with c. Any two choices have the same a so we can define $\delta(c) = a$ giving $\delta: H^n(W^*) \to H^{n+1}(U^*)$.
- Proof: By definition of Hⁿ(W*) there exists w as in (2). As p is surjective there exists v as in (3). Now p(d(v)) = d(p(v)) = d(w) = 0 so d(v) ∈ ker(p) = img(i) so there exists u ∈ Uⁿ⁺¹ with i(u) = d(v). Also i(d(u)) = d(i(u)) = d²(v) = 0 but i is injective so d(u) = 0 so u is as in (4). We define a = [u] so (5) holds. Uniqueness is similar.

- ▶ Let $U^* \xrightarrow{i} V^* \xrightarrow{p} W^*$ be a SES of cochain complexes and chain maps
- ▶ $\delta: H^n(W^*) \to H^{n+1}(U^*)$ with $\delta(c) = a$ iff there is a snake (c, w, v, u, a)i.e. (1) $c \in H^n(W^*)$; (2) $w \in Z^n(W^*)$ with c = [w]; (3) $v \in V^n$ with p(v) = w; (4) $u \in Z^{n+1}(U^*)$ with i(u) = d(v); (5) $a = [u] \in H^{n+1}(U^*)$.
- Claim: the following sequence is exact:

$$\cdots \to H^{n-1}(W^*) \xrightarrow{\delta} H^n(U^*) \xrightarrow{i_*} H^n(V^*) \xrightarrow{p_*} H^n(W^*) \xrightarrow{\delta} H^{n+1}(U^*) \to \cdots$$

i.e.
$$i_*\delta = 0$$
, $p_*i_* = 0$, $\delta p_* = 0$,
ker $(i_*) \leq \operatorname{img}(\delta)$, ker $(p_*) \leq \operatorname{img}(i_*)$, ker $(\delta) \leq \operatorname{img}(p_*)$.

- For $i_*\delta = 0$: $i_*(\delta(c)) = i_*([u]) = [i(u)] = [d(v)] = 0$.
- For $p_*i_* = 0$: $p_*(i_*([u])) = p_*([i(u)]) = [p(i(0))] = [0] = 0$.
- ► For $\delta p_* = 0$: if $v \in Z^n(V^*)$ then d(v) = 0 = i(0) so we have a snake $(p_*([v]), p(v), v, 0, 0)$.
- ► For ker $(i_*) \leq img(\delta)$: suppose $u \in Z^n(U^*)$ with $i_*([u]) = 0$. Then [i(u)] = 0 so i(u) = d(v) for some $v \in V^{n-1}$. Then d(p(v)) = p(d(v)) = p(i(u)) = 0 so we have a snake ([p(v)], p(v), v, u, [u]) giving $[u] = \delta([p(v)]) \in img(\delta)$.
- ► The rest is similar.

The Mayer-Vietoris Sequence

- Suppose $U \xrightarrow{i} X \xleftarrow{j} V$ are inclusions of open sets with $X = U \cup V$.
- ▶ Put $A^* = C^*(X)$ and $C^*_{\text{small}}(X) = A^*/K^*$ where $K^* = I^* \cap J^* = \ker(i^*) \cap \ker(j^*) = C^*_{\text{big}}(X)$.
- ▶ The short exact sequence $K^* \rightarrow A^* \rightarrow A^*/K^*$ gives an exact sequence

$$H^n(K^*) o H^n(A^*) = H^n(X) o H^n(A^*/K^*) = H^n_{ ext{small}}(X) \xrightarrow{\delta} H^{n+1}(K^*)$$

- Claim: H*(K*) = 0. Given this, the above gives H*(X) = H*mall(X) so we have the Mayer-Vietoris sequence as originally stated.
- Why is $H^*(K^*) = 0$? First $K^0 = 0$ so $H^0(K^*) = 0$ and $H^1(K^*) = Z^1(K^*)$.
- Consider a path u: [0,1] = Δ¹ → X and let u₀, u₁ be the first and second halves. Define p: Δ² → Δ¹ by p(t₀, t₁, t₂) = (t₀ + t₁/2, t₁/2 + t₂). If f ∈ Z¹(K*) then using (df)(u ∘ p) = 0 we get f(u) = f(u₀) + f(u₁). Repeat: f(u) is a sum of 2^N terms, each f applied to a small piece of u. Eventually all the pieces lie in U or in V, so f(u) = 0.
- To prove Hⁿ(K^{*}) = 0 in general, we need to subdivide Δⁿ into smaller copies of Δⁿ and also define a map Δⁿ⁺¹ → Δⁿ analogous to p. This can be done by explicit combinatorics or by a more abstract method ("acyclic models").

The Mayer-Vietoris Sequence

- ► Suppose $U \xrightarrow{i} X \xleftarrow{j} V$ are inclusions of open sets with $X = U \cup V$. $S_n^0(X) = \{u : \Delta^n \to X \mid u(\Delta^n) \subseteq U \cap V\}$ $S_n^1(X) = \{u : \Delta^n \to X \mid u(\Delta^n) \subseteq U, u(\Delta^n) \not\subseteq V\}$ $S_n^2(X) = \{u : \Delta^n \to X \mid u(\Delta^n) \not\subseteq U, u(\Delta^n) \subseteq V\}$ $S_n^3(X) = \{u : \Delta^n \to X \mid u(\Delta^n) \not\subseteq U, u(\Delta^n) \not\subseteq V\} = \{\text{large } n\text{-simplices}\}$ $A_n^k = \text{Map}(S_n^k, \mathbb{Z})$ $C^*(X) = A_0^* \times A_1^* \times A_2^* \times A_3^* =: A^*$ $C^*(U) = A_0^* \times A_1^* = A^*/I^* \text{ where } I^* = A_2^* \times A_3^*$ $C^*(V) = A_0^* \times A_2^* = A^*/J^* \text{ where } J^* = A_1^* \times A_3^*$ $C^*(U \cap V) = A_0^* = A_1^*/(I^* + J^*)$ $C_{\text{small}}^*(X) = A_0^* \times A_1^* \times A_2^* = A^*/(I^* \cap J^*)$
- ► We have a short exact sequence

$$C^*_{\text{small}}(X) \xrightarrow{\begin{bmatrix} k^* \\ l^* \end{bmatrix}} C^*(U) \times C^*(V) \xrightarrow{\begin{bmatrix} i^* & -j^* \end{bmatrix}} C^*(U \cap V)$$

- giving a Mayer-Vietoris type sequence
- $\cdots \to H^{n-1}(U \cap V) \to H^n_{\text{small}}(X) \to H^n(U) \times H^n(V) \to H^n(U \cap V) \to H^{n+1}_{\text{small}}(X) \to \cdots$

Cohomology of spheres

- ▶ Claim: For $n \ge 0$ there is an element $u_n \in H^n(S^n)$ such that $H^*(S^n) = \mathbb{Z} \oplus \mathbb{Z} u_n$.
- ▶ For n = 0: the space $S^0 = \{1, -1\}$ is discrete, so $H^n(S^0) = 0$ for $n \neq 0$ and $H^0(S^0) = \text{Map}(S^0, \mathbb{Z})$. We put $u_0(1) = 01$ and $u_0(-1) = 1$ so $H^0(S^0) = \mathbb{Z} \oplus \mathbb{Z} u_0$.
- For n > 0, we put $N = (0, ..., 0, 1) \in S^n$ and $U = S^n \setminus \{-N\}$ and $V = S^n \setminus \{N\}$ so $S^n = U \cup V$.
- For $(x, t) \in U \cap V = S^n \setminus \{N, -N\}$ we have $||x||^2 + t^2 = 1$ with |t| < 1 so $x \neq 0$; so we can define $r: U \cap V \to S^{n-1}$ by r(x, t) = x/||x||.
- ▶ We also have $\delta: H^{n-1}(U \cap V) \to H^n(S^n)$ and we put $u_n = \delta(r^*(u_{n-1}))$.
- Stereographic projection: U ≃ V ≃ ℝⁿ (contractible) so H⁰(U) = H⁰(V) = ℤ but Hⁿ(U) = Hⁿ(V) = 0 otherwise.
- ▶ $i: S^{n-1} \to U \cap V$ by i(x) = (x, 0) has ri = 1 and $h: ir \simeq 1$ by h(s, (x, t)) = (x, st)/||(x, st)||. Thus $H^*(U \cap V) \simeq H^*(S^{n-1}) = \mathbb{Z} \oplus \mathbb{Z}u_{n-1}$.

- $\alpha(n) = (n, n) \text{ and } \beta(p, q) = (q p).1.$
- ▶ It follows that $H^0(S^1) = \mathbb{Z}$ and $H^1(S^1) = \mathbb{Z}u_1$ and $H^n(S^1) = 0$ otherwise,

Distinguishing spheres and euclidean spaces

- ▶ We proved: $H^*(S^n) = \mathbb{Z} \oplus \mathbb{Z}u_n$ with $u_n \in H^n(S^n)$.
- Thus: if n ≠ m then H^{*}(Sⁿ) ≄ H^{*}(S^m) as graded rings so Sⁿ is not homotopy equivalent to S^m.
- ▶ Recall that $\mathbb{R}^{n+1} \setminus \{0\}$ is homotopy equivalent to S^n . Thus, if $n \neq m$ then $\mathbb{R}^{n+1} \setminus \{0\}$ is not homotopy equivalent to $\mathbb{R}^{m+1} \setminus \{0\}$.
- Also ℝ⁰ \ {0} = Ø,
 so if p ≠ q then ℝ^p \ {0} is not homotopy equivalent to ℝ^q \ {0}.
- Given a homeomorphism $f: \mathbb{R}^p \to \mathbb{R}^q$, we can define g(x) = f(x) f(0)with $g^{-1}(y) = f^{-1}(y + f(0))$; this gives another homeomorphism with g(0) = 0. This in turn gives a homeomorphism $\mathbb{R}^p \setminus \{0\} \to \mathbb{R}^q \setminus \{0\}$ so p = q.
- Conclusion: if $p \neq q$ then \mathbb{R}^p is not homeomorphic to \mathbb{R}^q .
- This is very easy to believe but very hard to prove without cohomology.

The Brouwer fixed point theorem

- Lemma: if $i: S^{n-1} \to B^n$ is the inclusion then there is no continuous map $r: B^n \to S^{n-1}$ with $ri = 1: S^{n-1} \to S^{n-1}$.
- ▶ **Proof:** Cases n = 0, 1 (with $S^{-1} = \emptyset$) are easy so take n > 1.
- If ri = 1 then the composite

$$\mathbb{Z} = H^{n-1}(S^{n-1}) \xrightarrow{i^*} H^{n-1}(B^n) = 0 \xrightarrow{r^*} H^{n-1}(S^{n-1} = \mathbb{Z}$$

is the identity, but that is impossible. \Box

- ▶ **Theorem (Brouwer):** if $f: B^n \to B^n$ is continuous, then there exists $x \in B^n$ with f(x) = x.
- ▶ **Proof:** suppose not. Then for each x we can draw a line from f(x) to x and extend it until we hit the boundary at a point $r(x) \in S^{n-1}$.

If x ∈ Sⁿ⁻¹ we just have r(x) = x.
 One can check that r is continuous, so this contradicts the lemma. □

Cohomology of $X \times Y$

Suppose we have two spaces X and Y, and thus projections $X \xleftarrow{p} X \times Y \xrightarrow{q} Y$. Given $a \in H^r(X)$ and $b \in H^s(Y)$ we define $a \times b = p^*(a)q^*(b) \in H^{r+s}(X \times Y)$; this is called the *external product* of a and b.

This construction gives a map $\mu \colon H^*(X) \otimes H^*(Y) \to H^*(X \times Y)$, with $\mu(a \otimes b) = a \times b$.

Here $M \otimes N \simeq N \otimes M$; $(L \oplus M) \otimes N \simeq (L \otimes N) \oplus (M \otimes N)$; $\mathbb{Z} \otimes M \simeq M$; $(\mathbb{Z}/r) \otimes M = M/rM$; $\mathbb{Z}^n \otimes \mathbb{Z}^m \simeq \mathbb{Z}^{nm}$; $\mathbb{Z}/r \otimes \mathbb{Z}/s \simeq \mathbb{Z}/gcd(r, s)$

The map μ is an isomorphism if each group H'(X) is free and finitely generated (this is a special case of the *Künneth theorem*).

Now consider the inclusions $X \xrightarrow{i} X \amalg Y \xleftarrow{j} Y$ and the resulting map $H^*(X \amalg Y) \to H^*(X) \times H^*(Y)$, given by $a \mapsto (i^*(a), j^*(a))$. This is easily seen to be an isomorphism.

The definition of a manifold

Definition

A topological manifold of dimension n is a second countable, Hausdorff topological space M such that each point $x \in M$ has an open neighbourhood $U \subseteq M$ such that U is homeomorphic to \mathbb{R}^n .

The space on the left is a manifold of dimension 2; the one on the right is not.

Open subsets of \mathbb{R}^n

Example

Let U be the open ball of radius $\epsilon > 0$ around a point $x \in \mathbb{R}^n$. Then there is a homeomorphism $f: U \to \mathbb{R}^n$:

$$f(y) = \frac{y - x}{1 - \|y - x\|^2/\epsilon^2} \qquad \qquad f^{-1}(z) = x + \frac{\sqrt{\epsilon^2 + 4\|z\|^2 - \epsilon}}{2\|z\|^2} \epsilon z$$

It follows that any open subspace of \mathbb{R}^n is an n-dimensional topological manifold.

An interesting special case is

$$F_n\mathbb{C} := \{z \in \mathbb{C}^n \mid z_i \neq z_j \text{ when } i \neq j\}.$$

This can be viewed as an open subspace of $\mathbb{C}^n \simeq \mathbb{R}^{2n}$; we will study its cohomology later.

Vector spaces

Convention

Many examples below will involve vector spaces. Everywhere in these notes, vector spaces are assumed finite dimensional unless otherwise specified, and the scalar field is \mathbb{R} unless otherwise specified.

Example

Let V be a vector space of dimension n. There is a natural topology on V (the smallest one for which all linear maps $V \to \mathbb{R}$ are continuous) and with this topology V is homeomorphic to \mathbb{R}^n . Thus V is a topological manifold.

Example

Now suppose that V is equipped with an inner product, and define the sphere S(V) as $\{x \in V \mid ||x|| = 1\}$. For $x \in S(V)$ put $U_x = \{y \in S(V) \mid \langle x, y \rangle > 0\}$ and $V_x = \{z \mid \langle x, z \rangle = 0\}$.

Define $f_x: V_x \to U_x$ by $f_x(z) = (x+z)/\sqrt{1+z^2}$.

One can check that this is a homeomorphism, and also V_{\times} is a vector space of dimension n-1 so it is homeomorphic to \mathbb{R}^{n-1} . It follows that S(V) is a manifold of dimension n-1. It is easy to see that it is compact.

Complex projective space

Let V have dimension m over \mathbb{C} . Put $PV = \{ \text{lines in } V \}$.

Define $q: V^{\times} = V \setminus \{0\} \to PV$ by $q(x) = [x] = \mathbb{C}x$. This is surjective, and we give *PV* the quotient topology. Claim: this makes *PV* a topological manifold. Indeed, given a line $L \in PV$ choose *W* with $V = L \oplus W$, and put $U = \{M \in PV \mid M \cap W = 0\}$. Then *U* is an open neighbourhood of *L* in *PV*. We can define $f = f_{LW}$: Hom $(L, W) \to PV$ by

 $f(\alpha) = \operatorname{graph}(\alpha \colon L \to W) = (1 + \alpha)(L) \le L + W = V.$

One can check that this gives a homeomorphism from Hom $(L, W) \simeq \mathbb{C}^{n-1} \simeq \mathbb{R}^{2n-2}$ to U, so U is a chart domain around L. For $V = \mathbb{C}^{m+1}$: $PV = \mathbb{C}P^m$, $[z_0 : \cdots : z_m] = \mathbb{C}.(z_0, \ldots, z_m)$

Some projective varieties

Suppose that $m \leq n$. The Milnor hypersurface in $\mathbb{C}P^m \times \mathbb{C}P^n$ is the space

$$H_{m,n} = \{([z], [w]) \in \mathbb{C}P^m imes \mathbb{C}P^n \mid \sum_{i=0}^m z_i w_i = 0\}$$

Suppose that d > 2. The Fermat hypersurface of degree d in $\mathbb{C}P^m$ is

$$X_{d,m} = \{ [z] \in \mathbb{C}P^m \mid \sum_{i=0}^m z_i^d = 0 \}.$$

Consider the space

$$C = \{ [x: y: z] \in \mathbb{C}P^2 \mid y^2 z = x(x-z)(x+z) \}.$$

This is an example of an *elliptic curve*. It is homeomorphic to the torus $S^1 \times S^1$.

Grassmannians and flag varieties

Let $G_k(V)$ be the set of k-dimensional subspaces of $V \simeq \mathbb{C}^d$. (So $PV = G_1(V)$.) This is again a compact manifold, of dimension 2k(d - k).

Indeed, given $A \in G_k(V)$ we can choose a subspace $B \in G_{d-k}(V)$ with $V = A \oplus B$. We find that the set $U = \{A' \in G_k(V) \mid A' \cap B = 0\}$ is an open neighbourhood of A, and that we have a homeomorphism $\text{Hom}(A, B) \to U$ given by $\alpha \mapsto \text{graph}(\alpha) = (1 + \alpha)(A)$.

A complete flag in V is a sequence of complex subspaces $0 = W_0 < W_1 < \ldots < W_d = V$ such that dim $(W_k) = k$ for all k. The space of complete flags is written Flag(V); it is again a compact manifold, of dimension $d^2 - d$.

A flag W in $V = \mathbb{C}^d$ is bounded if $W_k \leq \mathbb{C}^{k+1}$ for all k. The set B_d of bounded flags is a manifold of dimension 2d - 2. It is an example of a *toric variety*: there is an action of the group $(\mathbb{C}^{\times})^{d-1}$ that is nearly free and nearly transitive.

Unitary groups

Let V be a complex vector space of dimension d. Suppose we have a Hermitian inner product (so that $\langle u, v \rangle = \overline{\langle v, u \rangle}$ and $z \langle u, v \rangle = \langle zu, v \rangle = \langle u, \overline{z}v \rangle$ when $z \in \mathbb{C}$ and $u, v \in V$). Any endomorphism α of V has an adjoint α^{\dagger} , with $\langle \alpha(u), v \rangle = \langle u, \alpha^{\dagger}(v) \rangle$. Put

$$U(V) = \{ \alpha \in \operatorname{Aut}(V) \mid \alpha^{\dagger} = \alpha^{-1} \} = \text{ the unitary group of } V.$$
$$\mathfrak{u}(V) = \{ \beta \in \operatorname{End}(V) \mid \beta^{\dagger} = -\beta \}.$$

After choosing an orthonormal basis for V, it is not hard to check that $\mathfrak{u}(V)$ is a real vector space of dimension d^2 .

Also, if $\beta \in \mathfrak{u}(V)$ we see that the eigenvalues of β are purely imaginary, so that the maps $1 \pm \beta/2$ are invertible. For any $\alpha \in U(V)$ we define $f_{\alpha} : \mathfrak{u}(V) \to \operatorname{Aut}(V)$ by

$$f_{\alpha}(\beta) = (1 + \beta/2)(1 - \beta/2)^{-1}\alpha$$

One checks that this gives a homeomorphism of $\mathfrak{u}(V)$ with a neighbourhood of α in U(V). It follows that U(V) is a topological manifold.

Lens spaces

Now consider $C_n = \langle \omega \rangle < \mathbb{C}^{\times}$, where $\omega = e^{2\pi i/n}$.

This acts by multiplication on $S(V) \simeq S(\mathbb{C}^d) \simeq S^{2d-1}$, so we can put $L = S(V)/C_n$.

Claim: L is a manifold of dimension 2d - 1.

To see this, let $\pi: S(V) \to S(V)/C_n$ be the projection map, and note that $\pi^{-1}\pi(U) = \bigcup_{k=0}^{d-1} \omega^k U$; this implies that π is an open map. Next put $\epsilon = |\omega - 1|/2$, and for $v \in S(V)$ put $N_{\epsilon}(v) = \{w \in S(V) \mid ||v - w|| < \epsilon\}$. One checks easily that $||\omega^k u - u|| \ge 2\epsilon ||u||$ and thus that $\pi: N_{\epsilon}(v) \to S(V)/C_n$ is injective. It follows that $\pi: N_{\epsilon}(v) \to \pi N_{\epsilon}(v)$ is a homeomorphism and that the codomain is open in S(V); this shows that $S(V)/C_n$ is a manifold. We will see that $H^2(S(V)/C_n) \simeq \mathbb{Z}/n$. This is our first example where the cohomology is not a free abelian group.

Knot surgery

Let j be an embedding of the solid torus $S^1 \times D^2$ in $\mathbb{R}^3 \subset S^3$, whose image $\mathcal{K} = j(S^1 \times D^2)$ is a knot.

If we remove the interior of K we get a space X_0 with boundary $\partial(X_0) = S^1 \times S^1$.

This is the same as the boundary of $X_1 = D^2 \times S^1$.

We can thus glue X_0 and X_1 along their boundaries to get a new manifold called X. This is the most basic example of *surgery*: making new manifolds from old by cutting and gluing.

Cohomology of punctured euclidean space

- Consider a list a_1, \ldots, a_n of distinct points in \mathbb{R}^d (with d > 1) and put $M = \mathbb{R}^d \setminus \{a_1, \ldots, a_n\}.$
- Define $f_i: M \to S^{d-1}$ by $f_i(x) = (x a_i)/||x a_i||$ and put $v_i = f_i^*(u_{d-1}) \in H^{d-1}(M)$.
- As $u_{d-1}^2 = 0$ and f_i^* is a ring map we have $v_i^2 = 0$.
- Claim: we have $H^0(M) = \mathbb{Z}$ and $H^{d-1}(M) = \mathbb{Z}\{v_1, \dots, v_n\}$ and $H^k(M) = 0$ otherwise.
- For n = 0 or n = 1 we have seen this already.
- For n > 1, put $A = \mathbb{R}^d \setminus \{a_1, \dots, a_{n-1}\}$ and $B = \mathbb{R}^d \setminus \{a_n\}$ so $M = A \cap B$ and $A \cup B = V$ (contractible).
- We have a Mayer-Vietoris sequence

 $0=H^{d-1}(V)\to H^{d-1}(A)\oplus H^{d-1}(B)\to H^{d-1}(M)\xrightarrow{\delta} H^d(V)=0,$

- so $H^{d-1}(M) \simeq H^{d-1}(A) \oplus H^{d-1}(B) \simeq H^{d-1}(A) \oplus \mathbb{Z}.v_n$.
- A bit more work with the same Mayer-Vietoris sequence proves the full claim.
- ▶ In particular, $v_i v_i = 0$ for all *i* and *j* (because $H^{2d-2}(M) = 0$).

- ▶ $F_n\mathbb{C} = \{z \in \mathbb{C}^n \mid z_p \neq z_q \text{ for all } p \neq q\}.$
- ► f_{pq} : $F_n \mathbb{C} \to S^1$ by $f_{pq}(z) = (z_q z_p)/|z_q z_p|$; $a_{pq} = f_{pq}^*(u_1) \in H^1(F_n \mathbb{C})$.
- Using $h(t,z) = e^{\pi i t} f_{pq}(z)$ we see that $f_{pq} \simeq f_{qp}$ and $a_{qp} = a_{pq}$.
- As f_{pq}^* is a ring map and $u_1^2 = 0$ we get $a_{pq}^2 = 0$.
- Define $g: F_3\mathbb{C} \to \mathbb{C} \times \mathbb{C}^{\times} \times (\mathbb{C} \setminus \{0,1\})$ by $g(z) = (z_0, z_1 z_0, \frac{z_2 z_0}{z_1 z_0})$. This is a homeomorphism, with $g^{-1}(u, v, w) = (u, u + v, u + vw)$.
- ► Here $H^*(\mathbb{C}) = \mathbb{Z}$, $H^*(\mathbb{C}^{\times}) = \mathbb{Z}[u]/u^2$ and $H^*(\mathbb{C} \setminus \{0,1\}) = \mathbb{Z}[v_1, v_2]/(v_1^2, v_1v_2, v_2^2)$.
- ▶ Thus, Künneth gives $H^*(F_3\mathbb{C}) = H^*(\mathbb{C}) \otimes H^*(\mathbb{C}^{\times}) \otimes H^*(\mathbb{C} \setminus \{0,1\}) = \mathbb{Z}[u, v_0, v_1]/(u^2, v_1^2, v_1v_2, v_2^2) = \mathbb{Z}\{1, u, v_0, v_1, uv_0, uv_1\}.$
- One checks that $a_{01} = a_{10} = u$ and $a_{02} = a_{20} = u + v_0$ and $a_{12} = a_{21} = u + v_1$. It follows that $a_{01}a_{12} + a_{12}a_{20} + a_{20}a_{01} = u(u + v_1) + (u + v_1)(u + v_0) + (u + v_0)u = 3u^2 + uv_1 + v_1u + uv_0 + v_0u = 0$.
- ▶ More generally, given distinct i, j, k we define $q: F_n \mathbb{C} \to F_3 \mathbb{C}$ by $q(z) = (z_i, z_j, z_k)$, so $q^* a_{01} = a_{ij}$ and $q^* a_{12} = a_{jk}$ and $q^* a_{20} = a_{ki}$.
- ▶ By applying q^* to our relation in $H^*(F_3\mathbb{C})$ we get $a_{ij}a_{jk} + a_{jk}a_{ki} + a_{ki}a_{ij} = 0$ in $H^*(F_n\mathbb{C})$.
- Thus all the claimed relations are valid in H*(F_nC); we still need to check that there are no additional generators or relations.

Fibre bundle cohomology

- Consider a continuous map $p: E \to B$ with fibres $F_b = p^{-1}{b}$ for $b \in B$ and inclusions $i_b: F_b \to E$.
- Suppose we have a basis x_1, \ldots, x_n for $H^*(B)$, and elements $y_1, \ldots, y_m \in H^*(E)$ such that $i_b^*(y_1), \ldots, i_b^*(y_m)$ is always a basis for $H^*(F_b)$.
- Expectation: $p^*(x_1)y_1, \ldots, p^*(x_n)y_m$ should be a basis for $H^*(E)$.
- ▶ If $p = (B \times F \xrightarrow{\text{proj}} B)$ then this follows from the Künneth Theorem.
- ▶ More generally, it works for *fibre bundles*.
- ▶ Say $U \subseteq X$ is even if $(p^{-1}(U) \xrightarrow{p} U)$ is like $(U \times F \xrightarrow{\text{proj}} U)$.
- Say *p* is a *fibre bundle* if *B* can be covered by even open sets.
- Define $\phi_U : A(U)^* = \bigoplus_{i=1}^m H^{*-|y_i|}(U) \to B(U)^* = H^*(p^{-1}(U))$ by $\phi_U(a_1, \ldots, a_m) = \sum_i p^*(a_i)y_i.$
- If U is even then ϕ_U is an isomorphism by Künneth.
- ▶ Claim: if U is even and ϕ_V is an isomorphism then so is $\phi_{U \cup V}$.
- ▶ If *B* is compact then $B = U_1 \cup \cdots \cup U_p$ with U_i even and we conclude that ϕ_B is an isomorphism.
- ▶ This also works if *B* is not compact, by a limit argument.

The Five Lemma

Lemma

Suppose we have a commutative diagram with exact rows:

A — ^p	$\rightarrow B$ —	$\xrightarrow{q} C$ —	$\xrightarrow{r} D$ —	$\xrightarrow{s} E$
$\simeq \alpha$	$\beta \simeq$	γ	$\simeq \int \delta$	$\simeq \downarrow \epsilon$
A'	$\rightarrow B'$ —	$\xrightarrow{q'} C'$	$\xrightarrow[r']{} D' =$	$\xrightarrow{s'} E'$

If $\alpha,\,\beta,\,\delta$ and ϵ are isomorphisms, then so is $\gamma.$

Proof Suppose that $c \in \ker(\gamma)$. Then $\delta r(c) = r'\gamma(c) = 0$, but δ is iso, so r(c) = 0. By exactness c = q(b) for some $b \in B$. Now $q'\beta(b) = \gamma q(b) = \gamma(c) = 0$. By exactness $\beta(b) = p'(a')$ for some $a' \in A'$. Put $a = \alpha^{-1}(a') \in A$, so $\beta p(a) = p'\alpha(a) = p'(a') = \beta(b)$ As β is iso, this gives p(a) = b. We now have c = q(b) = qp(a) = 0, proving that γ is injective. A similar type of argument proves surjectivity.

The induction step

 $\begin{array}{ll} E \xrightarrow{p} B & y_j \in H^*(E) & A^k(U) = \bigoplus_j H^{k-|y_j|}(U) \xrightarrow{\phi_U} B^k(U) = H^*(p^{-1}(U)) \\ \text{For each } b \in B, \text{ the elements } i_b^*(y_j) \text{ give a basis of } H^*(F_b). \end{array}$

▶ For open sets $U, V \subseteq B$ we have Mayer-Vietoris sequences for (U, V) and for $(p^{-1}(U), p^{-1}(V))$ giving a diagram as follows:

- ▶ If ϕ_U , ϕ_V and $\phi_{U \cap V}$ are isomorphisms, then so is $\phi_{U \cup V}$, by the Five Lemma.
- Suppose U is even and ϕ_V is iso. Then $U \cap V$ is also even so ϕ_U and $\phi_{U \cap V}$ are also iso, so $\phi_{U \cup V}$ is iso.
- ▶ Thus: if *B* can be covered by finitely many even open sets, then ϕ_B is iso.
- ▶ **Remark:** We have made the strong assumption that there are elements $y_j \in H^*(E)$ giving a basis for each $H^*(F_b)$. Without that assumption we need to use the Serre Spectral Sequence $H^i(B; H^j(F)) \Longrightarrow H^{i+j}(E)$ which is much more complicated.

- Define $p: F_{n+1}\mathbb{C} \to F_n\mathbb{C}$ by $p(z_0, \ldots, z_n) = (z_0, \ldots, z_{n-1})$.
- One can check that this is a fibre bundle.
- For $z = (z_0, \ldots, z_{n-1}) \in F_n \mathbb{C}$ we have $p^{-1}\{z\} \simeq \mathbb{C} \setminus \{z_0, \ldots, z_{n-1}\}$ so $H^*(p^{-1}\{z\}) = \mathbb{Z}\{1, v_0, \ldots, v_{n-1}\} = \mathbb{Z}\{1, i^*(a_{0,n}), \ldots, i^*(a_{n-1,n})\}$.
- ► Thus the fibre bundle theorem gives $H^i(F_{n+1}\mathbb{C}) = H^i(F_n\mathbb{C}) \oplus \bigoplus_{i=0}^{n-1} H^{i-1}(F_n\mathbb{C}).a_{jn}$
- From $F_3\mathbb{C} \simeq \mathbb{C} \times \mathbb{C}^{\times} \times (\mathbb{C} \setminus \{0,1\})$ we obtained $H^*(F_3\mathbb{C}) = \mathbb{Z}\{1, a_{01}, a_{02}, a_{12}, a_{01}a_{02}, a_{01}a_{12}\}.$
- It follows that the following set is a basis for $H^*(F_4\mathbb{C})$:

1	a_{01}	a_{02}	a_{12}	$a_{01}a_{02}$	$a_{01}a_{12}$
a 03	$a_{01}a_{03}$	$a_{02}a_{03}$	$a_{12}a_{03}$	$a_{01}a_{02}a_{03}$	$a_{01}a_{12}a_{03}$
a_{13}	$a_{01}a_{13}$	$a_{02}a_{13}$	$a_{12}a_{13}$	a 01 a 02 a 13	a 01 a 12 a 13
a 23	$a_{01}a_{23}$	a 02 a 23	a ₁₂ a ₂₃	a 01 a 02 a 23	a 01 a 12 a 23

- ▶ In particular, $H^*(F_4\mathbb{C})$ is generated as a ring by the elements a_{pq} .
- ▶ With a bit more pure algebra, we can also check that all relations follow from the relations $a_{pq} = a_{qp}$, $a_{pq}^2 = 0$ and $a_{pq}a_{qr} + a_{qr}a_{rp} + a_{rp}a_{pq} = 0$ mentioned previously.

Cohomology of Milnor hypersurfaces

- ▶ Let $\mathbb{C}P^m \xleftarrow{p} \mathbb{C}P^m \times \mathbb{C}P^n \xrightarrow{q} \mathbb{C}P^n$ be the projection maps.
- ▶ We have seen that $H^*(\mathbb{C}P^m) = \mathbb{Z}[x]/x^{m+1}$ and $H^*(\mathbb{C}P^n) = \mathbb{Z}[x]/x^{n+1}$.
- Put $y = p^*(x)$ and $z = q^*(x)$ so Künneth gives

$$H^*(\mathbb{C}P^m \times \mathbb{C}P^n) = \mathbb{Z}[y, z]/(y^{m+1}, z^{n+1}) = \mathbb{Z}\{y^i z^j \mid i \leq m, j \leq n\}.$$

- ▶ Now suppose that $m \le n$ and put M =Milnor hypersurface = $\{([z], [w]) \in \mathbb{C}P^m \times \mathbb{C}P^n \mid \sum_{i=0}^m z_i w_i = 0\}$. There are restricted projections $\mathbb{C}P^m \xleftarrow{p_1} M \xleftarrow{q_1}{\cong} \mathbb{C}P^n$.
- ▶ $p_1^{-1}\{[z]\} = P(V_z)$, where $V_z = \{w \mid \sum_{i=0}^m z_i w_i = 0\}$, so $\{z^i \mid 0 \le j < n-1\}$ gives a basis for $H^*(p_1^{-1}\{[z]\})$.
- Fibre bundle theorem: $\{y^i z^j \mid i < m, j < n-1\}$ is a basis for $H^*(M)$.
- ▶ In particular z^{n-1} is expressible in terms of $1, z, ..., z^{n-2}$.
- It turns out that

$$H^*(M) = \mathbb{Z}[y, z]/(y^m, z^{n-1} - yz^{n-2} + \ldots \pm y^{n-1})$$

= $\mathbb{Z}\{y^i z^j \mid i \le m, j < n\}$

Cohomology of complex projective space

- ▶ $\mathbb{C}P^n = \{[z] \mid z \in \mathbb{C}^{n+1} \setminus \{0\}\}, \text{ where } [z] = [z'] \text{ iff } z' \in \mathbb{C}^{\times} z.$
- $\mathbb{C}P^1 \simeq \mathbb{C} \cup \{\infty\} \simeq S^2$ by $[z_0 : z_1] \mapsto z_0/z_1$, so $H^*(\mathbb{C}P^1) = \mathbb{Z}\{1, x\} = \mathbb{Z}[x]/x^2$ with $x \in H^2(\mathbb{C}P^1)$.
- Claim: $H^*(\mathbb{C}P^n) = \mathbb{Z}[x]/x^{n+1}$ with $x \in H^2(\mathbb{C}P^n)$.
- Or: $H^{2k}(\mathbb{C}P^n) = \mathbb{Z}.x^k$ for $0 \le k \le n$ but $H^j(\mathbb{C}P^n) = 0$ otherwise.
- ▶ Put $U = \{[z] \in \mathbb{C}P^n \mid z_n \neq 0\}$ and $V = \{[z] \in \mathbb{C}P^n \mid (z_0, ..., z_{n-1}) \neq 0\}$.
- ▶ The map $[z] \mapsto (z_0, \ldots, z_{n-1})/z_n$ gives $U \simeq \mathbb{C}^n$ and $U \cap V \simeq \mathbb{C}^n \setminus \{0\}$, so $H^*(U) = \mathbb{Z}$ and $H^*(U \cap V) = \mathbb{Z}\{1, u_{2n-1}\}$.
- ▶ We have $V \xrightarrow{r} \mathbb{C}P^{n-1} \xrightarrow{s} V$ by $r([z]) = [z_0, \ldots, z_{n-1}]$ and $s([z_0, \ldots, z_{n-1}]) = [z_0, \ldots, z_{n-1}, 0]$. Clearly rs = 1, and using $h(t, [z]) = [z_0, \ldots, z_{n-1}, tz_n]$ we get $1 \simeq sr$. Thus $H^*(V) \simeq H^*(\mathbb{C}P^{n-1}) = \mathbb{Z}[x]/x^n$.
- For p > 0 we now have a Mayer-Vietoris sequence

 $H^{p-1}(\mathbb{C}P^{n-1}) \xrightarrow{k^*} H^{p-1}(S^{2n-1}) \xrightarrow{\delta} H^p(\mathbb{C}P^n) \xrightarrow{i^*} H^p(\mathbb{C}P^{n-1}) \xrightarrow{k^*} H^p(S^{2n-1})$

For most p the second and last terms are zero so $H^p(\mathbb{C}P^n) \simeq H^p(\mathbb{C}P^{n-1})$. In particular we have $x \in H^2(\mathbb{C}P^n)$ and $H^{2j}(\mathbb{C}P^n) = \mathbb{Z}.x^j$ for $0 \le j < n$.

One exception is the case p = 2n when we get H²ⁿ(ℂPⁿ) = ℤ.δ(u_{2n-1}). Different methods are needed to show that δ(u_{2n-1}) = ±xⁿ, completing the induction.

Cohomology of Fermat hypersurfaces

- Fix d, n > 2 and put M = Fermat hypersurface = $\{[z] \in \mathbb{C}P^{2n} \mid \sum_{k=0}^{2n} z_k^d = 0\}$.
- Claim: there are elements $x \in H^2(M)$ and $y \in H^{2n}(M)$ with $H^*(M) = \mathbb{Z}\{1, x, \dots, x^{n-1}, y, xy, \dots, x^{n-1}y\} = \mathbb{Z}[x, y]/(y^2, x^n dy).$
- ▶ Start of the proof: put $\omega = e^{i\pi/d}$ and define $j: \mathbb{C}P^{n-1} \xrightarrow{j} M \xrightarrow{r} \mathbb{C}P^{2n-1}$ by $j([z_0, \ldots, z_{n-1}]) = [z_0, \ldots, z_{n-1}, \omega z_0, \ldots, \omega z_{n-1}, 0].$
- Also note that for $[z] \in M$ we have $(z_0, \ldots, z_{2n-1}) \neq 0$ so can define $r: M \to \mathbb{C}P^{2n-1}$ by $r([z_0, \ldots, z_{2n}]) = [z_0, \ldots, z_{2n-1}].$
- ▶ This gives $\mathbb{Z}[x]/x^{2n} \xrightarrow{r^*} H^*(M) \xrightarrow{j^*} \mathbb{Z}[x]/x^n$ with rj homotopic to the inclusion $\mathbb{C}P^{n-1} \to \mathbb{C}P^{2n-1}$ and so $j^*(r^*(x)) = x$.
- A typical point [w] ∈ CP²ⁿ⁻¹ has preimage r⁻¹{[w]} ⊂ M of size d (because a nonzero complex number has d different dth roots). From this we can deduce by degree theory that x²ⁿ⁻¹ is divisible by d in H⁴ⁿ⁻²(M).
- Define f: CP²ⁿ → [0, 1] by f([z]) = |∑_k z^d_k|/∑_k |z^d_k|, so M = f⁻¹{0}. We can try to deform CP²ⁿ onto M by moving in the direction of steepest decrease of f. This fails because of stationary points, but the failure is controlled by Morse theory, which gives homological information.

Cohomology of flag spaces

- ▶ Recall that Flag(V) is the space of all lists $(W_0, ..., W_d)$ where $0 = W_0 < W_1 < ... < W_d = V$ with $\dim_{\mathbb{C}}(W_i) = i$.
- We can define p_i: Flag(V) → PV by p_i(W) = W_i ⊖ W_{i-1} (the orthogonal complement of W_{i-1} in W_i). This gives x_i = p_i^{*}(x) ∈ H²(Flag(V)).
- ► Let s_k be the *k*'th elementary symmetric polynomial, i.e. the sum of all terms like $x_{i_1} \cdots x_{i_k}$ with $i_1 < \cdots < i_k$, or the coefficient of t^{d-k} in $\prod_i (t + x_i)$.
- We will show later that $H^*(Flag(V)) = \mathbb{Z}[x_1, \ldots, x_d]/(s_1, \ldots, s_d)$.
- Let B be the set of monomials x₁^{n₁}...x_d^{n_d</sub> with 0 ≤ n_i < i for all i; then B is a basis for H^{*}(Flag(V)).}
- To prove these statements, we will need to generalise them, to give statements that can be proved inductively using the fibre bundle theorem.

Relative and reduced cohomology

- For $Y \subseteq X$ put $C^*(X, Y) = \ker(i^* \colon C^*(X) \to C^*(Y))$ and $H^*(X, Y) = H^*(C^*(X, Y))$ (relative cohomology).
- This is a nonunital ring and a module over H^{*}(X).
- ► The short exact sequence C^{*}(X, Y) → C^{*}(X) → C^{*}(Y) gives a long exact sequence

 $H^{k-1}(Y) \xrightarrow{\delta} H^k(X,Y) \xrightarrow{\theta} H^k(X) \xrightarrow{i^*} H^k(Y) \xrightarrow{\delta} H^{k+1}(X,Y).$

- $\blacktriangleright H^*(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}) = H^*(B^n, S^{n-1}) = \mathbb{Z}.v_n \text{ where } v_n = \delta(u_{n-1}) \in H^n.$
- The maps δ and θ are $H^*(X)$ -linear (with \pm -signs).
- ▶ If X has a specified basepoint $* \in X$ we put $\widetilde{C}^k(X) = C^k(X, \{*\})$ and

$$\widetilde{H}^{k}(X) = H^{k}(X, \{*\}) = egin{cases} H^{k}(X) & ext{if } k > 0 \ \{u \colon \pi_{0}(X) o \mathbb{Z} \mid u(*) = 0\} & ext{if } k = 0 \end{cases}$$

$$\blacktriangleright \widetilde{H}^*(\mathbb{R}^n \setminus \{0\}) = \widetilde{H}^*(S^{n-1}) = \mathbb{Z}.u_{n-1}.$$

Collapse and excision

For closed $Y \subseteq X$ we let X/Y be the quotient space where Y is collapsed to a single point, taken as the basepoint.

- ▶ The collapse $p: X \to X/Y$ induces $p^*: \widetilde{H}^*(X/Y) \to H^*(X, Y)$, which is usually iso (when Y is closed).
- This works for submanifolds of manifolds, subcomplexes of simplicial complexes, subsets of Rⁿ defined by polynomial inequalities.
- It can fail if X has an infinite amount of topological structure arbitrarily close to Y as with fractals.
- Keywords: excision and neighbourhood deformation retract.
- ▶ If $U \subseteq X$ is open we can often find $Y \subseteq U$ with Y closed in X such that $Y \rightarrow U$ is a homotopy equivalence; then $H^*(X, U) = H^*(X, Y)$, which is usually $\widetilde{H}^*(X/Y)$.
- Example: $H^{n-1}(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}) = H^n(B^n, B^n \setminus \{0\}) = H^n(B^n, S^{n-1}) =$

 $\widetilde{H}^n(B^n/S^{n-1}) = \widetilde{H}^n(S^n) = \mathbb{Z}.$

Cohomology of the unitary group

- ▶ Claim: $H^*(U(n))$ is freely generated by elements $a_{2k-1} \in H^{2k-1}(U(n))$ for $1 \le k \le n$ with $a_i^2 = 0$.
- $\blacktriangleright H^*(U(3)) = E[a_1, a_3, a_5] = \mathbb{Z}\{1, a_1, a_3, a_5, a_1a_3, a_1a_5, a_3a_5, a_1a_3a_5\}$

► $U(1) = S^1$ and $U(2) = S^1 \times S^3$ by $(a, b, c) \mapsto \begin{bmatrix} ab & -\overline{c} \\ ac & \overline{b} \end{bmatrix}$. For n > 2 the spaces U(n) and $P(n) = \prod_{k=1}^n S^{2k-1}$ have isomorphic

cohomology rings but are not homotopy equivalent.

▶ Define $U(n) \xrightarrow{i} U(n+1) \xrightarrow{p} S^{2n+1}$ by

$$i(A) = \begin{bmatrix} A & 0 \\ \hline 0 & 1 \end{bmatrix}$$
 $p(B) = B.e_{n+1} = \text{ last column of } B.$

- ▶ $p^{-1}{e_{n+1}} = i(U(n))$, and $p^{-1}{u} = B.i(U(n))$ for any B with $B.e_{n+1} = u$; so p is a fibre bundle projection.
- ▶ If we knew that $H^*(U(n)) = E[a_1, ..., a_{2n-1}]$ and that there were elements $a_{2k-1} \in H^{2k-1}(U(n+1))$ for k < n with $i^*(a_{2k-1}) = a_{2k-1}$ then we could put $a_{2n-1} = p^*(u_{2n-1})$ and the fibre bundle theorem would give $H^*(U(n+1)) = E[a_1, ..., a_{2n+1}].$

- For $z \in S^1$ and $L \in \mathbb{C}P^n$ we put $r(z, L) = z.1_L \oplus 1_{L^{\perp}}$ on $L \oplus L^{\perp} = \mathbb{C}^{n+1}$ or $r(z, [u]).v = v + (z-1)\langle v, u \rangle u / \langle u, u \rangle \in v + L$.
- ▶ This gives a continuous map $r: S^1 \times \mathbb{C}P^n \to U(n+1)$.
- ▶ We also put r(z, L, A) = r(z, L) A giving $r: S^1 \times \mathbb{C}P^n \times U(n) \rightarrow U(n+1)$.
- ▶ We will see that this is "almost a homeomorphism".
- ▶ Put $Y = (S^1 \times \mathbb{C}P^{n-1}) \cup (\{1\} \times \mathbb{C}P^n) \subset S^1 \times \mathbb{C}P^n$.
- ▶ For z = 1 we have $p(r(1, L)) = r(1, L) \cdot e_{n+1} = e_{n+1}$ always. For $z \neq 1$ we have $p(r(z, L)) = e_{n+1}$ iff $r(z, L) \cdot e_{n+1} = e_{n+1}$ iff $e_{n+1} \in L^{\perp}$ iff $L \in \mathbb{C}P^n$.
- Also, for $A \in U(n)$ we have $A \cdot e_{n+1} = e_{n+1}$ so p(r(z, L, A)) = p(r(z, L)).
- Conclusion: $p(r(z, L, A)) = e_{n+1}$ iff $(z, L, A) \in Y \times U(n)$.
- Now consider $w \in S^{2n+1} \setminus \{e\}$ where $e = e_{n+1}$. Put $z = \langle w, w - e \rangle / \langle e, w - e \rangle$ and $L = \mathbb{C}.(w - e)$. Calculation gives $(z, L) \in (S^1 \times \mathbb{C}P^n) \setminus Y$ and $r^{-1}\{w\} = \{(z, L)\}$.
- ▶ Using this: *r* induces a homeomorphism $Q = (S^1 \times \mathbb{C}P^n \times U(n))/(Y \times U(n)) \rightarrow U(n+1)/U(n).$
- ▶ Thus: a long exact sequence relates $H^*(U(n))$, $H^*(U(n+1))$ and $\tilde{H}^*(Q)$.
- We will see that $\widetilde{H}^k(Q) = 0$ for k < 2n + 1, so $H^k(U(n+1)) = H^k(U(n))$ for k < 2n.

Hopf algebras

- Define U(n)² → U(n) ← 1 by μ(A, B) = AB and η(1) = I. These make U(n) a Lie group.
- Putting $A^* = H^*(U(n)) = E[a_1, a_3, \dots, a_{2n-1}]$ we get ring maps $A^* \otimes A^* \xleftarrow{\psi = \mu^*} A^* \xrightarrow{\epsilon = \eta^*} \mathbb{Z}.$
- The associativity law says that µ(µ × 1) = µ(1 × µ): U(V)³ → U(V), and this implies that (ψ ⊗ 1)ψ = (1 ⊗ ψ)ψ: A^{*} → (A^{*})^{⊗3}. The unit laws imply that (ε ⊗ 1)ψ = 1 = (1 ⊗ ε)ψ: A^{*} → A^{*}.

$$A^{*} \xleftarrow{\epsilon \otimes 1} A^{*} \otimes A^{*} \xrightarrow{1 \otimes \epsilon} A^{*} \qquad A^{*} \xrightarrow{\psi} A^{*} \otimes A^{*} \xrightarrow{\psi} A^{*} \xrightarrow{\psi}$$

- A structure like this is called a *Hopf algebra*.
- We say that $x \in A^n$ is primitive if $\epsilon(x) = 0$ and $\psi(x) = x \otimes 1 + 1 \otimes x$.
- ► For $A^* = H^*(U(n)) = E[a_1, ..., a_{2n-1}]$, the ring $A^* \otimes A^*$ is $E[b_1, ..., b_{2n-1}, c_1, ..., c_{2n-1}]$ where $b_{2i-1} = \pi_0^*(a_{2i-1}), c_{2i-1} = \pi_1^*(a_{2i-1})$.
- Claim: a_{2i-1} is primitive, i.e. $\mu^*(a_{2i-1}) = \pi_0^*(a_{2i-1}) + \pi_1^*(a_{2i-1}) = b_{2i-1} + c_{2i-1}.$
- Because μ^* is a ring map, this determines μ^* on all elements.

- ▶ Recall $Y = (S^1 \times \mathbb{C}P^{n-1}) \cup (\{1\} \times \mathbb{C}P^n) \subset X = S^1 \times \mathbb{C}P^n$.
- ▶ Now $X \setminus Y = (S^1 \setminus \{1\}) \times (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1})$ and $S^1 \setminus \{1\} \simeq \mathbb{R}$ (stereographically) and $\mathbb{C}P^n \setminus \mathbb{C}P^{n-1} \simeq \mathbb{C}^n \simeq \mathbb{R}^{2n}$ (by $[z_0 : \ldots : z_n] \mapsto (z_0, \ldots, z_{n-1})/z_n$).
- $\blacktriangleright \text{ Now } X \setminus Y \simeq \mathbb{R}^{2n+1} \text{ and } X/Y \simeq (X \setminus Y) \cup \{\infty\} \simeq \mathbb{R}^{2n+1} \cup \{\infty\} \simeq S^{2n+1}.$
- ▶ This gives $Q = (X \times U(n))/(Y \times U(n)) \simeq (S^{2n+1} \times U(n))/(\{*\} \times U(n))$ so $\widetilde{H}^*(Q) = H^*(S^{2n+1} \times U(n), \{*\} \times U(n)).$
- Künneth gives $H^*(S^{2n+1} \times U(n)) = H^*(U(n)) \oplus H^*(U(n)).u_{2n+1}$.
- ▶ The LES for relative cohomology then gives $\widetilde{H}^*(Q) \simeq H^*(S^{2n+1} \times U(n), \{*\} \times U(n)) = H^*(U(n)).u_{2n+1}.$
- ▶ But also $Q \simeq U(n+1)/U(n)$ so $H^*(U(n+1), U(n)) \simeq H^*(U(n)).u_{2n+1}$.
- For i < 2n we have $H^i(U(n+1), U(n)) = H^{i+1}(U(n+1), U(n)) = 0$ so $H^i(U(n+1)) \simeq H^i(U(n))$.
- ▶ Thus, for $k \le n$ there is a unique $a_{2k-1} \in H^{2k-1}(U(n+1))$ that maps to $a_{2k-1} \in H^{2k-1}(U(n))$. We also put $a_{2n+1} = p^*(u_{2n+1}) \in H^{2n+1}(U(n+1))$.
- The restriction i^{*}: H^{*}(U(n+1)) → H^{*}(U(n)) is a ring map that hits all the generators, so it is surjective. Thus δ = 0 in the LES.
- We can now conclude that $H^*(U(n+1)) = E[a_1, \ldots, a_{2n+1}].$

Proof of primitivity

- ▶ Claim: the map $\psi = \mu^*$: $E[a_1, \ldots, a_{2n-1}] \rightarrow E[b_1, \ldots, b_{2n-1}, c_1, \ldots, c_{2n-1}]$ sends a_{2i-1} to $b_{2i-1} + c_{2i-1}$.
- Put $u_{2i-1} = \psi(a_{2i-1}) b_{2i-1} c_{2i-1}$; we must show that $u_{2i-1} = 0$.
- From the counit laws (ε ⊗ 1)ψ = (1 ⊗ ε)ψ = 1 we see that u_{2i-1} ∈ I^{*} ⊗ I^{*} where I^{*} = ker(ε) = H̃^{*}(U(n)).
- ▶ The inclusion $j: U(n-1) \rightarrow U(n)$ is a group homomorphism with $H^*(U(n-1)) = A^*/a_{2n-1}$; this gives a diagram

$$\begin{array}{ccc} A^* & \xrightarrow{\psi} & A^* \otimes A^* \\ i^* & & \downarrow^{(j \times j)^*} \\ A^* / a_{2n-1} & \xrightarrow{\psi} & (A^* \otimes A^*) / (b_{2n-1}, c_{2n-1}) \end{array}$$

- ▶ For i < n we assume inductively that $j^*(a_{2i-1})$ is primitive; also $j^*(a_{2n-1}) = 0$ is primitive. So $u_{2i-1} \in J^* = (b_{2n-1}, c_{2n-1})$ for $i \leq n$.
- For i < n we have $J^{2i-1} = 0$ so $u_{2i-1} = 0$.
- For i = n we have $J^{2n-1} = \mathbb{Z}\{b_{2n-1}, c_{2n-1}\}$ but $I^* \otimes I^*$ is generated by all products $b_{2p-1}c_{2q-1}$ so $(I^* \otimes I^*) \cap J^*$ is zero in degree 2n 1. Thus u_{2n-1} is zero as well.

Vector bundles

- A vector bundle over a space X is a collection of finite-dimensional vector spaces V_x for each x ∈ X, "varying continuously".
- There must be a given topology on the total space EV = {(x, v) | x ∈ X, v ∈ V_x} such that p: (x, v) → x is continuous.
- Say U ⊆ X is even if there is a homeomorphism p⁻¹(U) ≃ ℝ^d × U compatible with projection and vector space structure.
- We require that X can be covered by even open sets.
- We usually assume that X is compact.
- It is harmless to assume that there are continuously varying inner products.
- ► Example: for $z \in S^1$ put $V_z = \{w \in \mathbb{C} \mid w^2 \in \mathbb{R}_+ z\}$ so $V_{\exp(i\theta)} = \mathbb{R}. \exp(i\theta/2)$. This is a vector bundle, and EV is a Möbius strip.
- The tangent bundle of S^n is $T_x S^n = \{v \in \mathbb{R}^{n+1} \mid \langle x, v \rangle = 0\}.$
- ▶ The tautological bundle over $\mathbb{C}P^n$ is $T_L = L$, so $ET = \{(v, L) \mid v \in L, L \leq \mathbb{C}^{n+1}, \dim(L) = 1\}.$
- The *image bundle* over $P = \{A \in M_n(\mathbb{C}) \mid A^2 = A\}$ is $W_A = \operatorname{img}(A) = \ker(I A).$
- Many interesting spaces can be described in terms of vector bundles.

Thom spaces

- If V is a d-dimensional vector bundle over a compact space X we define the Thom space X^V as EV ∪ {∞}.
- We will prove the Thom Isomorphism Theorem: if V is oriented then $\widetilde{H}^k(X^V) \simeq H^{k-d}(X)$.
- Many calculations can be deduced from this.
- Recall the Möbius bundle V_{exp(iθ)} = ℝ. exp(iθ/2) over S¹. Define
 f: EV → ℝP² = (ℝ³ \ {0})/ℝ[×] by f(e^{iθ}, te^{iθ/2}) = [cos(θ/2), sin(θ/2), t].
 With f(∞) = [0, 0, 1] this gives (S¹)^V ≃ ℝP².
- Recall the tautological bundle T over CPⁿ with T_L = L. One can check that there is a well-defined f: ET → CPⁿ⁺¹ given by f(v, Cu) = C.(u, ⟨u, v⟩). With f(∞) = C.e_{n+1} this gives (CPⁿ)^T ≃ CPⁿ⁺¹.
- After choosing inner products we can put $B(V) = \{(x, v) \in EV \mid ||x|| \le 1\}$ and $S(V) = \{(x, v) \in EV \mid ||x|| = 1\}$ and $EV^{\times} = \{(x, v) \in EV \mid v \ne 0\}$
- ▶ Recall that ℝ^d ∪ {∞} ≃ S^d ≃ B^d/S^{d-1}. By doing this in each fibre we get X^V ≃ B(V)/S(V).
- ▶ This gives $\widetilde{H}^*(X^V) = H^*(B(V), S(V)) = H^*(EV, EV^{\times}).$

Orientations and Thom classes

- For a vector space V ≃ ℝ^d, let Or(V) be the set of generators of the group H^d(V, V[×]) ≃ ℤ (so |Or(V)| = 2).
- If V is a complex vector space, there is a canonical orientation (because GL_n(C) is connected).
- If V is a d-dimensional vector bundle over X, the set Or(X) = {(x, u) | x ∈ X, u ∈ Or(V_x)} has a natural topology as a double cover of X.
- An orientation of V is a continuous choice of $u_x \in Or(V_x)$ for each $x \in X$.
- The Möbius bundle has no orientation; but any complex bundle has a canonical orientation.
- ▶ A Thom class for V is an element $u \in H^d(EV, EV^{\times})$ such that $i_x^*(u) \in H^d(V_x, V_x^{\times})$ is a generator for all $x \in X$.
- Theorem (Thom): there is a natural bijection from Thom classes to orientations. Moreover, if u is a Thom class then multiplication by u gives an isomorphism H^k(X) → H^{k+d}(EV, EV[×]) ≃ H̃^{k+d}(X^V).
- ► The proof is like the fibre bundle theorem. If U₀, U₁ are open in X, and the claim holds for U₀, and U₁ is even, then the claim holds for U₀ ∪ U₁ by a Mayer-Vietoris sequence. The claim therefore holds for finite unions of even sets, and thus for compact subsets of X.

The Euler class

- Let V be an oriented n-dimensional vector bundle over X, with Thom class u(V) ∈ H̃ⁿ(X^V).
- Define $i: X \to X^V$ by $i(x) = 0 \in V_x \subset X^V$.
- ▶ Put $e(V) = i^*(u(V)) \in H^n(X)$. This is called the *Euler class* of V.
- If $EV = \mathbb{R} \times X$ then *i* is homotopic to the constant map at ∞ and so e(V) = 0.
- ▶ In general one can show that $e(U \oplus W) = e(U)e(W)$.
- ▶ So if $V \simeq \mathbb{R} \oplus W$ then e(V) = 0.
- A section of V is a continuous map $s: X \to EV$ with $s(x) \in V_x$ for all x.
- ▶ If s is a section with $s(x) \neq 0$ for all x then we can put $U_x = \mathbb{R}.s(x)$ and $W_x = U_x^{\perp}$ to get e(V) = 0.
- ▶ By contrapositive: if $e(V) \neq 0$ then every section of V must vanish somewhere.
- Later we will see other characteristic classes giving invariants in H*(X) of vector bundles over X; these help to classify vector bundles up to isomorphism.

- Let V be an oriented *n*-dimensional vector bundle over X, with Euler class $e(V) \in H^n(X)$.
- ▶ The pair (*BV*, *SV*) has a long exact sequence:

$$\ldots \to H^{k}(BV, SV) \xrightarrow{\alpha} H^{k}(BV) \xrightarrow{\beta} H^{k}(SV) \xrightarrow{\delta} H^{k+1}(BV, SV) \to \ldots$$

- Here $H^k(BV, SV) = \widetilde{H}^k(BV/SV) = \widetilde{H}^k(X^V) = H^{k-n}(X).u(V).$
- ▶ The projection $p: BV \to X$ is a homotopy equivalence, with inverse given by the zero section $X \to BV$; so $H^k(BV) = H^k(X)$.
- This identifies α with the map i^* so $\alpha(a) = a.e(V)$.
- ▶ We now have an exact sequence as follows, called the *Gysin sequence*.

$$\to H^{k-1}(SV) \to H^{k-n}(X) \xrightarrow{\times e(V)} H^k(X) \xrightarrow{\beta} H^k(SV) \xrightarrow{\delta} H^{k+1-n}(X) \to \dots$$

Example: for the tautological bundle *T* over CPⁿ we have ST = {(v, L)|v ∈ L ≤ Cⁿ⁺¹, ||v|| = 1} = {(v, Cv)|v ∈ Cⁿ⁺¹, ||v|| = 1} ≃ S²ⁿ⁺¹. Also e(T) = x and H*ST is mostly zero so ×x: H^{k-2}CPⁿ → H^kCPⁿ is usually iso. Now we can complete the proof that H^{*}(CPⁿ) ≃ Z[x]/xⁿ⁺¹.

Partitions of unity

- Let X be a compact Hausdorff space with an open cover $U = (U_i)_{i \in I}$.
- For $\phi: X \to [0,\infty)$ we put $\operatorname{supp}(\phi) = \overline{\phi^{-1}((0,\infty))}$.
- A partition of unity subordinate to \mathcal{U} is a list $\phi_1, \ldots, \phi_n \colon X \to [0, 1]$ with $\sum_i \phi_j = 1$ such that for each j there exists i with $\operatorname{supp}(\phi_j) \subseteq U_i$.
- **Lemma:** there always exists a partition of unity.
- **Proof:** For each x choose i with $x \in U_i$.
- ▶ By standard general topology and Urysohn's Lemma: we can choose ψ_x : $X \to [0, 1]$ with $\psi_x(x) = 1$ and supp $(\psi_x) \subseteq U_i$.
- ▶ The open sets $V_x = \psi_x^{-1}((0,\infty))$ cover the compact space X, so we can choose x_1, \ldots, x_n with $\bigcup_{i=1}^n V_{x_i} = X$.
- Now put $\psi = \sum_{i=1}^{n} \psi_{x_i}$ so $\psi > 0$ everywhere. Put $\phi_j = \psi_{x_i}/\psi$.
- Example: let V be a vector bundle over X, and let U be the family of even open sets, i.e. those over which EV looks like ℝ^d × U.
 Then there are maps φ₁,..., φ_n: X → [0, 1] and even open sets U₁,..., U_n with ∑_i φ_j = 1 and supp(φ_j) ⊆ U_j.
- By adjusting the argument slightly we can assume that there are even open sets U'_i with U_j ⊆ U'_i.

Classifying vector bundles

- Vect_k(X) = {iso classes of k-dimensional vector bundles over X}
- Vect(X) is a semiring with [U] + [V] = [U ⊕ V], [U][V] = [U ⊗ V] This is commutative but there are no additive inverses.
- **Theorem:** there are spaces G_k with $\operatorname{Vect}_k(X) \simeq [X, G_k]$ for all compact X.
- ▶ Put $P = \mathbb{R}[t]$ and $P_m = \{f \in P \mid \deg(f) < m\}$. Put $G_{km} = \{V \le P_m \mid \dim(V) = k\}$ and $G_k = \{V \le P \mid \dim(V) = k\} = \bigcup_m G_{km}$.
- Define θ_{km}: G̃_{km} = {injective linear α: ℝ^k → P_m} → G_{km} by θ(α) = α(ℝ^k). Declare that U ⊆ G_k is open iff θ⁻¹_{km}(U) is open for all k and m.
- ▶ Define a tautological bundle *T* over G_k by $ET = \{(v, V) \mid v \in V \in G_k\}$.
- ► For any $f: X \to Y$ and any W over Y, define $f^*(W)_x = W_{f(x)}$ so $E(f^*W) = \{(x, w) \in X \times EW \mid f(x) = \pi(w)\}.$
- We now have ϕ_0 : Map $(X, G_k) \rightarrow \text{Vect}_k(X)$ by $\phi_0(f) = [f^*(T)]$.
- **Claim:** every V over X is isomorphic to $f^*(T)$ for some f, and $f_0^*(T) \simeq f_1^*(T)$ iff f_0 and f_1 are homotopic.

Extension of sections

- ▶ Let Y be a closed subset of a compact Hausdorff space X.
- ▶ Tietze's Theorem: any continuous map $Y \to \mathbb{R}$ can be extended to a continuous map $X \to \mathbb{R}$.
- ► Let V be a vector bundle over X. A section of V over Y is a continuous map $s: Y \to EV$ with $\pi(s(y)) = y$ (i.e. $s(y) \in V_y$) for all y.
- **Theorem:** any section *s* over *Y* can be extended over *X*.
- Proof: first suppose that V is constant, so EV = ℝ^d × X and sections over Y are just maps Y → ℝ^d. This case is immediate from Tietze's theorem.
- ▶ More generally, choose ϕ_j , U_j , U'_j where $supp(\phi_j) \subseteq U_j \subseteq \overline{U_j} \subseteq U'_j$ and V is constant over U'_j . By the previous case we can choose s_j over $\overline{U_j}$ extending $s|_{Y \cap \overline{U_j}}$.
- ▶ Define t_j to be φ_js_j on U_j, and 0 outside U_j. As supp(φ_j) ⊆ U_j this definition is consistent and gives a continuous section.
- Define a section $t = \sum_{j} t_{j}$ over X; as $\sum_{j} \phi_{j} = 1$ this extends s. \Box
- Application: A morphism α: V → W is the same as a section of the bundle Hom(V, W)_x = Hom(V_x, W_x). Thus, if we have a morphism defined only over Y, we can extend it to get a morphism defined over X.

The isomorphism locus is open, and homotopy invariance

- Let α: V → W be a morphism of d-dimensional vector bundles over X, and put A = {x | α_x: V_x → W_x is iso }.
- **Claim:** A is open.
- First suppose that V and W are constant, so EV = EW = ℝ^d × X. Then α is essentially a continuous map X → Hom(ℝ^d, ℝ^d) = M_d(ℝ), and A = {x | det(α_x) ≠ 0}, which is open.
- In general, for any x ∈ X we can choose an open neighbourhood U on which V and W are constant. The previous case then shows that A ∩ U is open. As this works for all x we see that A is open.
- Corollary: if $f_0 \simeq f_1$ via $h: [0,1] \times X \to Y$ then $f_0^*(W) \simeq f_1^*(W)$.
- For a ∈ [0, 1] define (V_a)_x = W_{h(a,x)}; we must show that V₀ ≃ V₁. Write a ~ b if V_a ≃ V_b. If the equivalence classes are open, connectedness of [0, 1] implies that 0 ~ 1.
- ▶ Define U, U' over $[0, 1] \times X$ by $U_{(t,x)} = W_{h(t,x)}$ and $U'_{(t,x)} = W_{h(a,x)}$.
- The identity gives an isomorphism α: U → U' over {a} × X. By the section extension lemma, this can be extended to a homomorphism α: U → U' over all of [0, 1] × X.
- The invertibility locus of α is open and contains {a} × X. As X is compact it contains some (a - ε, a + ε) × X, so the equivalence class of a contains (a - ε, a + ε).

Isomorphism implies homotopy

- Suppose $f_0, f_1 \colon X \to G_d$ with $f_0^*(T) \simeq f_1^*(T)$. Claim: $f_0 \simeq f_1$.
- ▶ **Proof:** As X is compact, so is $f_0(X) \cup f_1(X)$. It follows (by a lemma) that $f_0(X) \cup f_1(X) \subseteq G_{dN}$ for some N, i.e. $f_i(x) \leq P_N \subset P = \mathbb{R}[t]$.
- ▶ By assumption we have isomorphisms $\alpha(x): (f_0^*T)_x = f_0(x) \rightarrow (f_1^*T)_x = f_1(x)$ for all x.
- ▶ For $s \in [0,1]$ and $x \in X$ define $\beta(s,x)$: $f_0(x) \to P_{2N} = P_N \oplus t^N P_N$ by $\beta(s,x)(v) = (1-s)v + st^N \alpha(x)(v)$. This is injective so we can define $h(s,x) = \beta(s,x)(f_0(x)) \in G_k$.
- This gives a homotopy from f_0 to $t^N f_1$.
- ▶ We can also define $\gamma(s, x)$: $t^N f_1(x) \rightarrow P_{2N}$ by $\gamma(s, x)(t^N v) = sv + (1 - s)t^N v$, and then $k(s, x) = \gamma(s, x)(t^N f_1(x)) \in G_k$. This gives a homotopy from $t^N f_1$ to f_1 . \Box
- Homotopy invariance means we can define φ: [X, G_k] → Vect_k(X) by φ([f]) = [f*(T)]. Global generation allowed us to prove that φ is surjective. This slide shows that φ is injective. We therefore have a natural bijection φ: [X, G_k] → Vect_k(X).
- There is a similar result for complex vector bundles and the space of k-dimensional complex subspaces of C[t].

Global generation

- ▶ Let V be a d-dimensional vector bundle over X. Claim: for some N there is a map α : $\mathbb{R}^N \times X \to EV$ that is a linear surjection on each fibre.
- ▶ **Proof:** as before we can find open sets $U_1, \ldots, U_n, U'_1, \ldots, U'_n$ with $X = U_1 \cup \cdots \cup U_n$ and $\overline{U_i} \subseteq U'_i$ and U'_i is even.
- As U'_i is even and contains $\overline{U_i}$, we can choose an isomorphism $\alpha_i : \mathbb{R}^d \to V$ over $\overline{U_i}$, and then extend it to get a homomorphism $\alpha_i : \mathbb{R}^d \to V$ over all of X.
- Now define $\alpha : \mathbb{R}^{dn} \to V$ by $\alpha(u_1, \ldots, u_n) = \sum_i \alpha_i(u_i)$. Over $\overline{U_i}$ we know that α_i is iso so α is surjective. As $X = \bigcup_i U_i$ it follows that α is surjective everywhere. \Box
- **Corollary:** there is a map $f: X \to G_d$ with $V \simeq f^*(T)$.
- Proof: Choose α as before, so α_x: P_N = ℝ^N → V_x is a linear surjection. It follows that dim(ker(α_x)) = N − d and dim(ker(α_x)[⊥]) = d, so we can define f: X → G_{dN} ⊂ G_d by f(x) = ker(α_x)[⊥].
- ▶ It is easy to see that α_x restricts to give an isomorphism $(f^*(T))_x = \ker(\alpha_x)^{\perp} \to V_x$, so $f^*(T) \simeq V$. \Box

Classifying line bundles

- ▶ From now on everything is over C by default.
- $\blacktriangleright \operatorname{Pic}(X) = \operatorname{Vect}_1(X) = [X, G_1] = [X, \mathbb{C}P^{\infty}]$
- ▶ This is a group with $[L][M] = [L \otimes M]$ and $1 = [\mathbb{C}]$ and $[L]^{-1} = [L^*] = [Hom(L, \mathbb{C})]$ (because $L \otimes L^* \simeq \mathbb{C}$).
- ▶ Recall $G_1 = \mathbb{C}P^{\infty} = \{L < \mathbb{C}[t] \mid \dim(L) = 1\}.$
- Multiplication µ: ℂ[t] × ℂ[t] → ℂ[t] induces µ: ℂP[∞] × ℂP[∞] → ℂP[∞] and then µ: [X, ℂP[∞]] × [X, ℂP[∞]] → [X, ℂP[∞]]. This is the same product operation as before.
- We have seen that H^{*}(ℂPⁿ) = ℤ[x]/xⁿ⁺¹ with x = e(T). It is also true that H^{*}(ℂP[∞]) = ℤ[x] with x = e(T).
- For a line bundle *L* over *X* we have $e(L) \in H^2(X)$. If $L \simeq f^*(T)$ for some $f: X \to \mathbb{C}P^{\infty}$ then $e(L) = e(f^*(T)) = f^*(e(T)) = f^*(x)$.
- ▶ Note that $\mu^*(x) \in H^2(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = \mathbb{Z}\{x \otimes 1, 1 \otimes x\}$ and $\mu^*(x)$ restricts to x on $\mathbb{C}P^{\infty} \times \{1\}$ or $\{1\} \times \mathbb{C}P^{\infty}$.
- From this: $\mu^*(x) = x \otimes 1 + 1 \otimes x$, and then $e(L \otimes M) = e(L) + e(M)$.
- We now have a group homomorphism $e: \operatorname{Pic}(X) \to H^2(X)$. It can be shown that this is an isomorphism.

Cohomology of projective bundles

- Let V be a complex vector bundle of dimension d over X.
- ▶ Define $PV = \{(a, L) \mid a \in X, L \leq V_a, \dim(L) = 1\} = \coprod_a P(V_a).$
- This has a natural topology making it a fibre bundle over X, with fibres P(V_a) homeomorphic to CP^{d-1}.
- ▶ Define a tautological bundle T over PV by T_(a,L) = L or ET = {(a, L, v) | a ∈ X, L ≤ V_a, dim(L) = 1, v ∈ V_a}.
- ▶ This gives an element $e(T) \in H^2(PV)$ which we also call x. Put $B = (1, x, ..., x^{d-1})$.
- ▶ For $a \in X$ we have $i_a : P(V_a) \to PV$ with $i_a^*(T) = T$ and $i_a^*(x) = x \in H^2(P(V_a))$ so $i_a^*(B)$ is a basis for $H^*(P(V_a))$.
- By the fibre bundle theorem: B is a basis for $H^*(PV)$ over $H^*(X)$.
- Although $-x^d$ maps to zero on each fibre, it does not follow that $-x^d = 0$.
- ▶ Instead: we can express $-x^d$ in terms of *B*, so there are unique elements $c_i(V) \in H^{2i}(X)$ with $x^d + c_1(V)x^{d-1} + \cdots + c_{d-1}(V)x + c_d(V) = 0$.
- We put $c_0(V) = 1$ and $f_V(t) = \sum_{i=0}^d c_i(V)t^{d-i}$ so $f_V(x) = 0$ and $H^*(PV) \simeq H^*(X)[t]/f_V(t)$.
- The $c_i(V)$ are Chern classes and $f_V(t)$ is the Chern polynomial.

Chern classes of sums

- Consider complex vector spaces V, W. Suppose that L ≤ V ⊕ W is one-dimensional and L ≤ W. The projection π: V ⊕ W → V gives an isomorphism L → π(L). Composing the inverse with π': V ⊕ W → W gives α: π(L) → W.
- From this we get $P(V \oplus W) \setminus P(W) \simeq E(\text{Hom}(T, W))$ and $P(V \oplus W)/P(W) \simeq P(V)^{\text{Hom}(T,W)}$.
- This also works for vector bundles and projective bundles.
- ▶ This gives an LES relating $H^*(P(V \oplus W))$ and $H^*(P(W))$ and $\widetilde{H}^*(P(V)^{\text{Hom}(T,W)}) \simeq H^{*-2\dim(W)}(P(V))$; similarly with V, W exchanged.
- Here $H^*(P(V \oplus W)) = H^*(X)[t]/f_{V \oplus W}(t)$; similarly for P(V) and P(W).
- From this we can prove $f_{V \oplus W}(t) = f_V(t)f_W(t)$.
- Equivalently $c_k(V \oplus W) = \sum_{k=i+j} c_i(V)c_j(W)$.
- ▶ If dim(V) = d then $c_d(V) = (-1)^d e(V)$; so for line bundles $c_1(L) = -e(L) = e(L^*)$ and $f_L(t) = t - e(L)$.
- ▶ So if $V \simeq L_1 \oplus \cdots \oplus L_d$ then $f_V(t) = \prod_i (t e(L_i))$.
- So if V is the constant bundle \mathbb{C}^d then $f_V(t) = t^d$, $c_k(V) = 0$ for k > 0.

Relations for flag manifolds

- ▶ Recall that Flag(ℂⁿ) is the space of flags
 W = (W₀ < W₁ < ··· < W_n = ℂⁿ) with dim(W_i) = i.
- ▶ We have a line bundle L_i over $\operatorname{Flag}(\mathbb{C}^n)$ with $(L_i)_W = W_i/W_{i-1}$. This gives elements $x_i = e(L_i) \in H^2(\operatorname{Flag}(\mathbb{C}^n))$ for i = 1, ..., n, with $f_{L_i}(t) = t x_i$.
- If we put $V = \bigoplus_i L_i$ we get $f_V(t) = \prod_i (t x_i)$, so $c_k(V) = \pm \sigma_k$, where σ_k is the k'th elementary symmetric function of the variables x_i .
- ▶ The inner product gives a splitting $\mathbb{C}^n = W_n \simeq \bigoplus_{i=1}^n (W_i/W_{i-1})$ so $V = \bigoplus_i L_i \simeq \mathbb{C}^n$ as bundles so $f_V(t) = t^n$.
- It follows that $\sigma_k = 0$ for $1 \le k \le n$.
- ▶ In fact $H^*(\operatorname{Flag}(\mathbb{C}^n)) = \mathbb{Z}[x_1, \ldots, x_n]/(\sigma_1, \ldots, \sigma_n)$; to be proved later.
- **Example:** $H^* \operatorname{Flag}(\mathbb{C}^3) = \mathbb{Z}[x, y, z]/(x + y + z, xy + xz + yz, xyz).$
- First relation gives z = -x y; substitute in other relations to get $x^2 + xy + y^2 = 0$, $x^2y + xy^2 = 0$.
- Second relation now gives $y^2 = -x^2 xy$; substitute in third to get $x^3 = 0$.
- Now $H^* = \mathbb{Z}[x, y, z]/(x^3 = 0, y^2 = -x^2 xz, z = -x y0) = \mathbb{Z}\{1, x, x^3, y, xy, x^2y\}.$

Milnor hypersurfaces revisited

- ▶ Recall that for $m \le n$ we defined $H_{m,n} = \{([z], [w]) \in \mathbb{C}P^m \times \mathbb{C}P^n \mid \sum_{i=0}^m z_i w_i = 0\}.$
- ▶ This has projections $\mathbb{C}P^m \xleftarrow{p} H_{m,n} \xrightarrow{q} \mathbb{C}P^n$ and we put $y = p^*(x), \ z = q^*(x) \in H^2(H_{m,n}).$
- ▶ Define a bundle V over $\mathbb{C}P^m$ by $W_{[z]} = \{w \in \mathbb{C}^{n+1} \mid \sum_{i=0}^m z_i w_i = 0\}$. Then $H_{m,n} = PV$ and so $H^*(H_{m,n}) = H^*(\mathbb{C}P^n)\{z^j \mid 0 \le j < n\} = \mathbb{Z}[y, z]/(y^{m+1}, f_V(z)).$
- For $L \in \mathbb{C}P^m$ we define $\alpha_L \colon \mathbb{C}^{n+1} \to L^*$ by $\alpha(w)(v) = \sum_{i=0}^m w_i v_i$. This gives a surjective map $\alpha \colon \mathbb{C}^n \to T^*$ of vector bundles with ker $(\alpha) = V$.
- ▶ Using the inner product we get $T^* \oplus V \simeq \mathbb{C}^{n+1}$ so $(t+y)f_V(t) = f_{T^*}(t)f_V(t) = f_{\mathbb{C}^{n+1}}(t) = t^{n+1}$ in $H^*(\mathbb{C}P^m)[t] = \mathbb{Z}[y,t]/y^{m+1}$.
- By long division we get $f_V(t) = t^n yt^{n-1} + y^2t^{n-2} \cdots \pm y^mt^{n-m}$. Thus in $H^*(H_{m,n})$ we have $\sum_{i=0}^m (-1)^i y^i z^{n-i} = f_V(z) = 0$.

Cohomology of Lens spaces

- ▶ Put $\omega = e^{2\pi i/n}$ and $C_n = \langle \omega \rangle < \mathbb{C}^{\times}$ so *C* acts by multiplication on $S(\mathbb{C}^{d+1}) = S^{2d+1}$. Put $M = S^{2d+1}/C_n$ (a Lens space).
- Let T = tautological bundle over $\mathbb{C}P^d$, so e(T) = x and $e(T^{\otimes n}) = nx$.
- ▶ Define $\phi: S^{2d+1} \to S(T^{\otimes n}) = \{(L, v) \mid L \in \mathbb{C}P^d, v \in L^{\otimes n}, ||v|| = 1\}$ by $\phi(u) = (\mathbb{C}u, u^{\otimes n}).$
- Then ϕ is surjective and $\phi(u) = \phi(u')$ iff $u' = \omega^k u$ for some k.
- Thus ϕ induces a homeomorphism $M = S^{2d+1}/C_n \rightarrow S(T^n)$
- ► This gives a Gysin sequence $H^{k-2}(\mathbb{C}P^d) \xrightarrow{\times nx} H^k(\mathbb{C}P^d) \to H^k(M) \xrightarrow{\delta} H^{k-1}(\mathbb{C}P^d) \xrightarrow{\times nx} H^{k+1}(\mathbb{C}P^d).$
- ▶ This gives a short exact sequence $\mathbb{Z}[x]/(x^{d+1}, nx) = H^*(\mathbb{C}P^d)/nx \to H^*(M) \to \operatorname{ann}(nx, H^*(\mathbb{C}P^d)) = \mathbb{Z}.x^d$
- ▶ This gives $H^*(M) = \mathbb{Z}[x]/(x^{d+1}, nx) \oplus \mathbb{Z}v$ with $|v| = 2d + 1 = \dim(M)$.
- ► **Example:** For d = 4 we have $H^*(M) = (\mathbb{Z}, 0, (\mathbb{Z}/n)x, 0, (\mathbb{Z}/n)x^2, 0, (\mathbb{Z}/n)x^3, 0, (\mathbb{Z}/n)x^4, \mathbb{Z}v, 0, 0, ...).$

Cohomology of flag bundles

- ▶ Let *V* be a *d*-dimensional complex vector bundle over *X*.
- ▶ Put $\operatorname{Flag}_k(V) = \{(x, W_0 < W_1 < \cdots < W_k \le V_x) \mid \dim(W_i) = i\}.$
- Over $\operatorname{Flag}_k(V)$ we have line bundles L_1, \ldots, L_k with fibres $(L_i)_{(x,W)} = W_i/W_{i-1}$ and also a vector bundle U_k with $(U_k)_{(x,W)} = V_x/W_k$.
- We put $x_i = e(L_i) \in H^2(\operatorname{Flag}_k(V))$.
- Note that $L_1 \oplus \cdots \oplus L_k \oplus U_k \simeq \pi^*(V)$ so $f_V(t) = f_{U_k}(t) \prod_{i=1}^k (t x_i)$ in $H^*(\operatorname{Flag}_k(V))[t]$.
- A point of P(U_{k-1}) consists of a point
 (x, W) = (x, W₀ < ··· < W_{k-1}) ∈ Flag_{k-1}(V) together with a
 one-dimensional subspace M ≤ (U_{k-1})_(x,W) = V_x/W_{k-1}.
 This must have the form M = W_k/W_{k-1} for a unique W_k with
 W_{k-1} < W_k ≤ V_x and dim(W_k) = k. Thus Flag_k(V) = P(U_{k-1}).
- ▶ By the Projective Bundle Theorem: $H^*(\operatorname{Flag}_k(V)) = H^*(\operatorname{Flag}_{k-1}(V))\{x_k^i \mid 0 \le i \le d-k\}.$
- ▶ By induction: monomials $x_1^{i_1} \cdots x_k^{i_k}$ with $0 \le i_t \le d t$ give a basis for $H^*(\operatorname{Flag}_k(V))$ over $H^*(X)$.
- ▶ In particular: these monomials give a basis for $H^*(\operatorname{Flag}_k(\mathbb{C}^d))$ over \mathbb{Z} .

Ring structure of cohomology of flag bundles

- $\operatorname{Flag}_1(V) = PV$, so $H^*(\operatorname{Flag}_1(V)) = H^*(X)[x_1]/f_V(x_1)$.
- As $f_V(x_1) = 0$, we have $f_V(t) = (t x_1)g_1(t)$ for some monic $g_1(t) \in H^*(\operatorname{Flag}_1(V))[t]$ of degree d 1.
- As $U_0 = V = L_1 \oplus U_1$ we have $f_V(t) = (t x_1)f_{U_1}(t)$ so $g_1(t) = f_{U_1}(t)$.
- As $\operatorname{Flag}_2(V) = P(U_1)$ we have $H^*(\operatorname{Flag}_2(V)) = H^*(\operatorname{Flag}_1(V))[x_2]/f_{U_1}(x_2)$.
- This is also $H^*(X)[x_1, x_2]/(g_0(x_1), g_1(x_2))$, where $g_0(t) = f_V(t)$ and $g_1(t) = f_V(t)/(t - x_1)$.
- ▶ In general $H^*(Flag_k(V)) = H^*(X)[x_1, ..., x_k]/(g_{i-1}(x_i) | 1 \le i \le k)$ where $g_0(t) = f_V(t)$ and $g_i(t) = g_{i-1}(t)/(t-x_i)$.
- Or: put $A = H^*(X)[x_1, \ldots, x_k]$ and $h(t) = \prod(t x_i) \in A[t]$. By long division: $f_V(t) = h(t)q(t) + r(t)$ with $\deg(r(t)) < k$.
- Now $r(t) = m_0 + m_1 t + \dots + m_{k-1} t^{k-1}$ with $m_i \in A$, and $H^*(\operatorname{Flag}_k(V)) = A/(m_0, \dots, m_{k-1})$, so $f_V(t) = h(t)q(t)$ in $H^*(\operatorname{Flag}_k(V))[t]$.