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Some theorems

▶ If n ̸= m then Rn is not homeomorphic to Rm.

▶ Put

SO3 = {3× 3rotation matrices} = {A ∈ M3(R) | AAT = I , det(A) = 1}

P = {trace 1 projectors in R4} = {A ∈ M4(R) | AT = A2 = A, trace(A) = 1}

S3 = the 3-sphere = {x ∈ R4 | x2
0 + x2

1 + x2
2 + x2

3 = 1}

RP3 = S3/ ∼ where u ∼ v iff v = ±u

Then SO3, P and RP3 are homeomorphic to each other but not to S3.

▶ The Fundamental Theorem of Algebra: if f (z) ∈ C[z] is a nonconstant
polynomial, then it has a root.

▶ The Brouwer Fixed Point Theorem: if f : [0, 1]n → [0, 1]n is continuous,
then there is a fixed point x ∈ [0, 1]n with f (x) = x .

▶ The Borsuk-Ulam Theorem: if n > m then there is no continuous map
f : Sn → Sm with f (−x) = −f (x) for all x ∈ Sn.

A key method for proving these results is the theory of cohomology rings.

Cohomology

For each space X , one can define a cohomology ring H∗(X ). For the moment,
we will just list some properties of these rings (Eilenberg-Steenrod axioms).

1. H∗(X ) is a graded ring. For each integer j ≥ 0 we have an abelian group
H j(X ), and any pair of elements a ∈ H j(X ) and b ∈ Hk(X ) have a
product ab ∈ H j+k(X ). This multiplication is associative and distributes
over addition. It is commutative in the graded sense: ba = (−1)jkab.
(We also put H j(X ) = 0 for j < 0.)

2. H∗(X ) is contravariantly functorial in X : for any continuous map
f : X −→ Y we have a ring homomorphism f ∗ : H∗(Y ) −→ H∗(X ). If we
have another map g : Y −→ Z then (gf )∗ = f ∗g∗ : H∗(Z) −→ H∗(X ); also
1∗X = 1H∗(X ).

3. H∗(X ) is homotopy invariant: given a continuous family of maps
ft : X → Y (for 0 ≤ t ≤ 1) we have f ∗0 = f ∗1 : H∗(Y )→ H∗(X ). (The
family is a homotopy; the maps f0 and f1 are homotopic.)

4. H∗(point) = H0(point) = Z.
5. Excision and Mayer-Vietoris axioms (explained later).

These properties characterise H∗(X ) uniquely.

Examples of cohomology rings

Example

H∗(Sn) is the free abelian group generated by 1 ∈ H0(Sn) and an element
un ∈ Hn(Sn). The ring structure is given by u2

n = 0 (if n > 0).

Example

Suppose we have distinct points a1, . . . , an ∈ C and put M = C \ {a1, . . . , an}.
Define fi : M −→ S1 by fi (z) = (z − ai )/|z − ai | and put vi = f ∗i (u1).
Then H∗(M) is the free abelian group generated by 1 ∈ H0M and
v1, . . . , vm ∈ H1M. The ring structure is given by vivj = 0 for all i , j .

Example

Put FnC = {z ∈ Cn | zi ̸= zj for i ̸= j}.
Given i ̸= j ∈ {1, . . . , n} we define fij : FnC −→ S1 by fij(z) = (zi − zj)/|zi − zj |,
and put aij = f ∗ij u1. Then H∗(FnC) is freely generated by the elements aij
modulo relations aij = aji and a2ij = 0 and aijajk + ajkaki + akiaij = 0 for all
i , j , k. One can also give a basis for this ring as a free abelian group.



The group H0(X )

▶ The points of a space X can be grouped into path components, where x
and y lie in the same path component iff there is a continuous path
s : [0, 1]→ X with s(0) = x and s(1) = y .

▶ We write π0(X ) for the set of path components in X .

▶ We write Map(π0(X ),Z) for the set of functions from π0(X ) to Z. This is
a ring under pointwise addition and multiplication. For example, if X has
three path components, then Map(π0(X ),Z) ≃ Z× Z× Z.

▶ It works out that H0(X ) is always isomorphic to Map(π0(X ),Z). For
example, in the common case where X is path-connected, we just have
H0(X ) = Z.

▶ If X has the discrete topology, then π0(X ) = X so H0(X ) = Map(X ,Z).
In this case it can be shown that Hn(X ) = 0 for all n ̸= 0.

Steps to define H∗(X )

We will

▶ Define what we mean by a cochain complex

▶ Define what we mean by a graded ring

▶ Define what we mean by a differential graded ring: a cochain complex
with compatible graded ring structure

▶ Define the cohomology of a cochain complex, and show that the
cohomology of a DGR is a graded ring

▶ For each topological space X define a differential graded ring C∗(X ),
called the singular cochain complex of X

▶ Define H∗(X ) to be the cohomology of C∗(X ).

Cochain complexes and differential graded rings

▶ A cochain complex is a system of abelian groups U i (for i ∈ Z) equipped
with homomorphisms d : U i → U i+1 such that each composite

U i−1 d−→ U i d−→ U i+1

is zero (or more briefly, d2 = 0).
In almost all cases we will have U i = 0 for i < 0.

▶ A differential graded ring is a cochain complex A∗ together with an
element 1 ∈ A0 and a multiplication rule giving ab ∈ Ai+j for all a ∈ Ai

and b ∈ Aj , such that:

1a = a = a1 for all a ∈ Ai

a(bc) = (ab)c for all a ∈ Ai , b ∈ Aj , c ∈ Ak

a(b + c) = ab + ac for all a ∈ Ai , b, c ∈ Aj

(a+ b)c = ac + bc for all a, b ∈ Ai , c ∈ Aj

d(1) = 0

d(ab) = d(a)b + (−1)ia d(b) for all a ∈ Ai , b ∈ Aj .

The last relation is called the Leibniz rule.

Cohomology of a cochain complex

▶ Let A∗ be a cochain complex. For i ∈ Z we put

Z i (A∗) = ker(d : Ai → Ai+1) ≤ Ai (group of cocycles)

B i (A∗) = img(d : Ai−1 → Ai ) ≤ Ai (group of coboundaries)

▶ As d2 = 0 we have d(B i (A∗)) = 0 and so B i (A∗) ≤ Z i (A∗).
It is therefore meaningful to define H i (A∗) = Z i (A∗)/B i (A∗).
Elements of H i (X ) are cosets [z] = z + B i (X ), called cohomology classes.

▶ If A∗ is clear from the context, we will just write Z i , B i and H i instead of
Z i (A∗), B i (A∗) and H i (A∗).

▶ We write Z∗ for the sequence of groups Z i , and similarly for B∗ and H∗.

▶ Now let A∗ be a DGR. Using the Leibniz rule d(ab) = d(a)b ± a d(b) we
find that Z∗ is a subring of A∗ and that B∗ is an ideal in Z∗.

▶ It follows that H∗(A∗) has an induced ring structure with [z][w ] = [zw ] for
z ∈ Z n and w ∈ Zm.

▶ Example: A∗ = Z[x ]⊕ Z[x ]a with d(a) = x so d(xn) = 0, d(xna) = xn+1.

1 a x xa x2 x2a x30 0 0

Z 2k+1 = B2k+1 = 0 and Z 2k = B2k = Zxk except Z 0 = Z and B0 = 0.
Thus H0(A∗) = Z and Hn(A∗) = 0 for n ̸= 0.



Simplices

▶ The standard n-simplex is the space

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i and
∑
i

xi = 1}.

The vertices of ∆n are just the standard basis vectors e0, . . . , en, so
e0 = (1, 0, . . . , 0) and e1 = (0, 1, 0, . . . , 0) and en = (0, . . . , 0, 1).

▶ ∆0 is a point, ∆1 is an interval, ∆2 is a triangle, ∆3 is a tetrahedron.

e0

e1
∆1

e0

e1

e2
∆2

e0

e1

e2

e3

∆3

▶ We always identify (1− t, t) ∈ ∆1 with t ∈ [0, 1], so e0 ∼ 0 and e1 ∼ 1.

▶ We define Sk(X ) = Cont(∆k ,X ), the set of continuous maps ∆k → X .
As ∆0 = point we can identify S0(X ) with X .
As ∆1 = [0, 1] we can identify S1(X ) with the set of paths in X .
Loosely: S2(X ) is the set of triangles in X .

Singular cochains

▶ Define C k(X ) = Map(Sk(X ),Z) (the set of all functions from Sk(X ) to Z).
▶ S0(X ) = X so C 0(X ) = Map(X ,Z)

(the set of all maps X → Z, no continuity requirement)
(This is a commutative ring under pointwise addition and multiplication)

▶ S1(X ) is the set of paths in X , so C 1(X ) is the set of functions from paths
to integers.

▶ We define d : C 0(X )→ C 1(X ) by d(f )(u) = f (u(1))− f (u(0)) for
f ∈ C 0(X ) and u : [0, 1]→ X .

▶ More detail:
▶ f ∈ C0(X ) so f : X → Z.
▶ We need to define d(f ) ∈ C1(X ) = Map(S1(X ),Z),

so for u ∈ S1(X ) we need to define d(f )(u) ∈ Z.
▶ Here u : [0, 1] → X so u(0), u(1) ∈ X .
▶ As f : X → Z we have f (u(0)), f (u(1)) ∈ Z.
▶ We put d(f )(u) = f (u(1))− f (u(0)).

▶ For k < 0 we define Sk(X ) = ∅ and C k(X ) = 0 and
d = 0: C k(X )→ C k+1(X ).

▶ We will define d : C k(X )→ C k+1(X ) for k > 0 later.

Zeroth cohomology

▶ H0(X ) = Z 0(X )/B0(X ).

▶ B0(X ) = img(d = 0: C−1(X ) = 0→ C 0(X )),
so B0(X ) = 0, so H0(X ) = Z 0(X ).

▶ Z 0(X ) = ker(d : C 0(X )→ C 1(X )) = {f ∈ Map(X ,Z) | d(f ) = 0}.
▶ For a path u : [0, 1]→ X we have d(f )(u) = f (u(1))− f (u(0)),

so d(f ) = 0 iff f (u(1)) = f (u(0)) for all paths u.

▶ In other words, H0(X ) = Z 0(X ) is the set of maps f : X → Z such that
f (x) = f (y) whenever x and y can be connected by a path in X .

▶ In other words, H0(X ) is the set of maps f : X → Z that are constant on
each path component.

▶ Thus, if π0(X ) is the set of path components, then
H0(X ) = Map(π0(X ),Z).

▶ X is path connected if it is nonempty and any two points can be joined by
a path. If so, then |π0(X )| = 1 and H0(X ) is just the set of constant
functions X → Z so H0(X ) ≃ Z.

Face maps

▶ For 0 ≤ i ≤ n we define δi : ∆n−1 → ∆n by inserting 0 in position i :

δi (t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti , . . . , tn−1).

▶ This is the inclusion of the face opposite ei .

▶ For n = 2:

δ0(t0, t1) = (0, t0, t1) δ1(t0, t1) = (t0, 0, t1) δ2(t0, t1) = (t0, t1, 0).

e0

e1 e2
δ0(∆1)

δ1(∆1)δ2(∆1)

▶ For n = 1: the maps δ0, δ1 : ∆
0 = {e0} → ∆1 are given by

δ0(e0) = e1 and δ1(e0) = e0.



The differential

We define d : C k(X )→ C k+1(X ) by

d(f )(v) =
k+1∑
i=0

(−1)i f (v ◦ δi ).

In more detail:

▶ f is assumed to be an element of the group C k(X ) = Map(Sk(X ),Z), so
for each u ∈ Sk(X ) we have an integer f (u).

▶ d(f ) is supposed to be an element of the group
C k+1(X ) = Map(Sk+1(X ),Z), so for each element v ∈ Sk+1(X ) we need
to define the element d(f )(v) ∈ Z.

▶ So suppose we have v ∈ Sk+1(X ), i.e. v is a continuous map ∆k+1 → X .
For 0 ≤ i ≤ k + 1 we have a face map δi : ∆k → ∆k+1, which we can
compose with v to get a continuous map v ◦ δi : ∆k → X , or in other
words an element v ◦ δi ∈ Sk(X ).
As f : Sk(X )→ Z, we therefore have an integer f (v ◦ δi ) ∈ Z.

▶ We define d(f )(v) to be the alternating sum of the above integers, i.e.
d(f )(v) =

∑k+1
i=0 (−1)

i f (v ◦ δi ).

The face relation

▶ Claim: If 0 ≤ j ≤ i ≤ k then δjδi = δi+1δj : ∆
k−1 → ∆k → ∆k+1.

▶ Example: δ2δ3 = δ4δ2 : ∆
2 → ∆4:

0 1 2 3 4 5 6

δ2(t) =( t0, t1, 0, t2, t3, t4)

δ4(δ2(t)) =( t0, t1, 0, t2, 0, t3, t4)

δ3(t) =( t0, t1, t2, 0, t3, t4)

δ2(δ3(t)) =( t0, t1, 0, t2, 0, t3, t4)

▶ Claim: the composite C k−1(X )
d−→ C k(X )

d−→ C k+1(X ) is zero.
▶ By definition, for f ∈ C k−1(X ) and u ∈ Sk+1(X ) we have

d2(f )(u) =
k+1∑
j=0

(−1)id(f )(uδj) =
k+1∑
j=0

k∑
i=0

(−1)i+j f (uδjδi ).

The relation δjδi = δi+1δj shows that some terms are the same.
The +1 ensures that matching terms have opposite signs and so cancel.
With more care we can see that there is nothing left, so d2(f )(u) = 0.

▶ Thus: C∗(X ) is a cochain complex, and we can define
Z k(X ) = ker(d : C k(X )→ C k+1(X )) and
Bk(X ) = img(d : C k−1(X )→ C k(X )) and Hk(X ) = Z k(X )/Bk(X ).

Cohomology of discrete spaces

▶ Claim: if X is discrete then H0(X ) = Map(X ,Z) but Hk(X ) = 0 for k ̸= 0.
▶ Put A = Map(X ,Z). As X is discrete, any continuous map u : ∆k → X is

constant, so Sk(X ) ≃ X and C k(X ) = Map(Sk(X ),Z) ≃ A.
▶ If u : ∆k+1 → X is constant with value x , then u ◦ δi : ∆k → X is also

constant, with the same value.
▶ The formula for d : C k(X ) = A→ A = C k+1(X ) just becomes

d(f )(x) =
k+1∑
i=0

(−1)i f (x).

▶ If k is even: all terms cancel out in pairs, giving d(f )(x) = 0.
If k is odd: there is one term left over, giving d(f )(x) = f (x).

▶ Thus, the full sequence of groups C k(X ) and homomorphisms d looks like

· · · → 0→ 0→ C 0(X ) = A
0−→ A

1−→ A
0−→ A

1−→ A→ · · ·

▶ For k < 0 we have Z k = Bk = C k(X ) = 0 so Hk(0) = 0.
▶ Z 0 = A but B0 = 0 so H0(X ) = Z 0/B0 = A/0 = A = Map(X ,Z).
▶ For k > 0, if k is even we have Z k = Bk = A and if k is odd we have

Z k = Bk = 0. In both cases we have Z k = Bk so Hk(X ) = Z k/Bk = 0.

The cup product

▶ Given f ∈ C n(X ) and g ∈ Cm(X ) we need to define fg ∈ C n+m(X ).

▶ Here C n+m(X ) = Map(Sn+m(X ),Z) and Sn+m(X ) is the set of continuous
maps w : ∆n+m → X , so for each such w we must define (fg)(w) ∈ Z.

▶ Define ∆n λ−→ ∆n+m ρ←− ∆m by

λ(x0, . . . , xn) = (x0, . . . , xn, 0, . . . , 0) ρ(y0, . . . , ym) = (0, . . . , 0, y0, . . . , ym).

▶ Now wλ : ∆n → X so wλ ∈ Sn(X ) so f (wλ) ∈ Z.
▶ Also wρ : ∆m → X so wρ ∈ Sm(X ) so g(wρ) ∈ Z.
▶ We define (fg)(w) = f (wλ) g(wρ) ∈ Z.
▶ We also define 1 ∈ C 0(X ) = Map(X ,Z) to be constant with value 1.

▶ These definitions make C∗(X ) into a differential graded ring:
multiplication is distributive and associative with 1 as a two-sided unit,
and d(1) = 0, and d(fg) = d(f )g + (−1)nf d(g).

▶ The proof is an exercise.

▶ As discussed previously, there is an induced ring structure on H∗(X ).

▶ H∗(X ) is graded-commutative even though C∗(X ) is not.
The proof is harder, to be discussed later.



Functoriality

▶ A cochain map between cochain complexes U∗ and V ∗ is a system of
homomorphisms ϕ : Un → V n with dϕ = ϕd : Un → V n+1.

▶ For such ϕ, we see that ϕ(Z n(U∗)) ≤ Z n(V ∗) and ϕ(Bn(U∗)) ≤ Bn(V ∗)
so we have an induced homomorphism Hn(ϕ) : Hn(U∗)→ Hn(V ∗).

▶ This is functorial: Hn(1) = 1 and Hn(ψϕ) = Hn(ψ)Hn(ϕ) for cochain

maps U∗ ϕ−→ V ∗ ψ−→W ∗.

▶ If U∗ and V ∗ are DGRs: a DGR morphism is a cochain map that also
preserves products. For such ϕ, the induced map
H∗(ϕ) : H∗(U∗)→ H∗(V ∗) is a graded ring homomorphism.

▶ Now let p : X → Y be a continuous map. For f ∈ C n(Y ) and
u ∈ Sn(X ) = Cont(∆n,X ) we have pu ∈ Cont(∆n,Y ) = Sn(Y ) and so
f (pu) ∈ Z. We define p∗(f ) ∈ C n(X ) by p∗(f )(u) = f (pu).

▶ Using p ◦ (u ◦ δi ) = (p ◦ u) ◦ δi , we see that p∗(d(f )) = d(p∗(f )) in
C n+1(X ). Thus, p∗ is a cochain map.

▶ Using p ◦ (w ◦ λ) = (p ◦ w) ◦ λ and p ◦ (w ◦ ρ) = (p ◦ w) ◦ ρ, we see that
p∗(fg) = p∗(f )p∗(g) in C n+m(X ). Thus, p∗ is a morphism of DGRs, and
so induces a graded ring homomorphism H∗(Y )→ H∗(X ), which we also
call p∗.

Topological homotopy

▶ A homotopy between continuous maps f0, f1 : X → Y is a continuous map
F : [0, 1]× X → Y with F (0, x) = f0(x) and F (1, x) = f1(x) for all x ∈ X .

▶ We say that f0 and f1 are homotopic if such a homotopy exists.

▶ Exercise: this is an equivalence relation (written f0 ≃ f1).
Key point: given homotopies F0 : f0 ≃ f1 and F1 : f1 ≃ f2 we can put

F (t, x) =

{
F0(2t, x) if 0 ≤ t ≤ 1

2

F1(2t − 1, x) if 1
2
≤ t ≤ 1.

▶ Example: we can define f : Sn → Sn by f (x) = −x .
If n = 2m − 1 then Sn = {z ∈ Cm | ∥z∥ = 1} and we can define
F : 1Sn ≃ f by F (t, z) = eπitz .
If n is even then cohomology shows that 1Sn ̸≃ f .

▶ We can define pn : S
1 = {z ∈ C | |z | = 1} → S1 by pn(z) = zn.

Fact: any f : S1 → S1 is homotopic to pn for a unique n.

▶ F (t, x) = (1− t)f0(x) + t f1(x) gives a linear homotopy f0 ≃ f1 only if
Y ⊆ RN and the line segment from f0(x) to f1(x) is always contained in Y .

▶ Say Y ⊆ RN is convex if Y ̸= ∅ and every segment with endpoints in Y is
contained in Y . If so, all maps X → Y are homotopic.

Topological homotopy

▶ Homotopy is compatible with composition. In detail, if X
f0,f1−−→ Y

g0,g1−−−→ Z
and we have homotopies F : f0 ≃ f1 and G : g0 ≃ g1, then we can define
K : g0f0 ≃ g1f1 by K(t, x) = G(t,F (t, x)).

▶ We write [X ,Y ] = Cont(X ,Y )/ ≃ for the set of homotopy classes.

▶ Example: for S1 = {z ∈ C | |z | = 1}, every f : S1 → S1 is homotopic to
pn(z) = zn for a unique n ∈ Z, so [S1,S1] ≃ Z.

▶ There is a well-defined composition [Y ,Z ]× [X ,Y ]→ [X ,Z ] and thus a
category hTop of spaces and homotopy classes of maps.

▶ Maps X
f−→ Y

g−→ Z are homotopy inverse if gf ≃ 1X and fg ≃ 1Y ,
i.e. [g ] is inverse to [f ] in hTop.

▶ Say f : X → Y is a homotopy equivalence if it has a homotopy inverse,
i.e. it becomes an isomorphism in hTop.

▶ Say X and Y are homotopy equivalent if there is a homotopy equivalence
f : X → Y , i.e. X ≃ Y in hTop.

▶ Example: define Sn−1 i−→ Rn \ {0} p−→ Sn−1 by i(x) = x and r(y) = y/∥y∥.
Define F : [0, 1]× (Rn \ {0})→ Rn \ {0} by F (t, y) = ∥y∥−ty .
Then pi = 1 and F : 1 ≃ ip so i and p are mutually inverse homotopy
equivalences, and Sn−1 and Rn \ {0} are homotopy equivalent spaces.

Contractible spaces

▶ Say X is contractible iff it is homotopy equivalent to 1 = {0}.
▶ Exercise: X is contractible iff X ̸= ∅ and 1: X → X is homotopic to a

constant map.

▶ Exercise: any contractible space is path-connected.

▶ Example: any convex subset of RN is contractible, and any space
homeomorphic to a contractible space is contractible.

convex contractible, but not convex not contractible

▶ The following spaces are convex and so contractible: Rn, Bn, ∆n, [0, 1]n.

▶ Slogan: in homotopy theory, a contractible space of choices is as good as
a unique choice.



Cochain homotopy

▶ Let ϕ, ϕ′ : U∗ → V ∗ be cochain maps. A chain homotopy from ϕ to ϕ′ is
a system of homomorphisms σ : Un → V n−1 with dσ + σd = ϕ′ − ϕ. We
say that ϕ and ϕ′ are chain homotopic if such a chain homotopy exists.

▶ Exercise: this is an equivalence relation (written ϕ ≃ ϕ′).

▶ Exercise: this relation is compatible with composition:

If U∗ ϕ,ϕ′
−−−→ V ∗ ψ,ψ′

−−−→W ∗ and σ : ϕ ≃ ϕ′ and τ : ψ ≃ ψ′ then
ψσ + τϕ′ : ψϕ ≃ ψ′ϕ′.

▶ Claim: if σ : ϕ ≃ ϕ′ then H∗(ϕ) = H∗(ϕ′) : H∗(U∗)→ H∗(V ∗).

▶ Proof: consider an element z ∈ Z n(U∗) (so d(z) = 0). Then
Hn(ϕ′)([z])− Hn(ϕ)([z]) = [ϕ′(z)]− [ϕ(z)] = [(ϕ′ − ϕ)(z)] =
[d(σ(z)) + σ(d(z))] = [d(·) + 0] = 0.

▶ Proposition: a topological homotopy F : [0, 1]×X → Y from f0 to f1 gives
a chain homotopy between f ∗0 , f

∗
1 : C∗(Y )→ C∗(X ), so

f ∗0 = f ∗1 : H∗(Y )→ H∗(X ).

▶ Core of proof: divide [0, 1]×∆n into copies of ∆n+1, and think about the
boundary of this space.

▶ Corollary: if X is homotopy equivalent to Y , then H∗(X ) ≃ H∗(Y ).

▶ Example: if X is contractible then Hn(X ) = 0 except H0(X ) = Z.

The Mayer-Vietoris context

▶ Consider a space X with open subsets U,V ⊆ X .

▶ How are H∗(U), H∗(V ), H∗(U ∪ V ) and H∗(U ∩ V ) related?

U ∩ V U H∗(U ∩ V ) H∗(U)

V U ∪ V H∗(V ) H∗(U ∪ V )

i

j k

i∗

l

j∗ k∗

l∗

Hn−1(U ∩ V ) Hn(U ∪ V ) Hn(U) × Hn(V ) Hn(U ∩ V ) Hn+1(U ∪ V )δ

[
k∗
l∗

]
[ i∗ −j∗ ] δ

There is a non-obvious map δ extending the diagram as shown,
and this makes the sequence exact,
i.e. the image of each map is the kernel of the next.

Also: we have a ring map α = (ki)∗ = (lj)∗ : H∗(U ∪ V )→ H∗(U ∩ V ), and
δ(α(a)b) = (−1)na δ(b) for a ∈ Hn(U ∪ V ) and b ∈ Hm(U ∩ V ).

Exact sequences

▶ A sequence A
α−→ B

β−→ C is exact if img(α) = ker(β) (implies βα = 0)
▶ The sequence is short exact if also α is injective and β is surjective.

▶ A
α−→ B

0−→ C is exact iff α is surjective; so
A

α−→ B −→ 0 is exact iff α is surjective.

▶ A
0−→ B

β−→ C is exact iff β is injective; so

0 −→ B
β−→ C is exact iff β is injective.

▶ A
0−→ B

β−→ C
0−→ D is exact iff β is an isomorphism; so

0 −→ B
β−→ C −→ 0 is exact iff β is an isomorphism.

▶ A
0−→ B

0−→ C is exact iff B = 0; so 0→ B → 0 is exact iff B = 0.
▶ A cochain complex U∗ = (· · · → U−2 → U−1 → U0 → U1 → U2 → · · · )

is exact iff H∗(U∗) = 0.
▶ Split short exact sequence:

A
i−→ A⊕ B

p−→ B with i(a) = (a, 0) and p(a, b) = b.

▶ There is a short exact sequence Z/n i−→ Z/nm p−→ Z/m
with i(a (mod n)) = am (mod nm) and p(a (mod nm)) = a (mod m).
This is split iff n and m are coprime.

▶ For N ≤ M, N M M/Ninc proj
is short exact.

▶ If A
α−→ B

β−→ C is short exact then A ≃ α(A) ≤ B and B/α(A) ≃ C so
|B| = |A||B|.

The Snake Lemma

▶ Let U∗ i−→ V ∗ p−→W ∗ be a SES of cochain complexes and chain maps
(so d2 = 0; di = id and dp = pd ; img(i) = ker(p); i injective, p surjective)

▶ Claim: there are maps δ : Hn(W ∗)→ Hn+1(U∗) giving an exact sequence

· · · → Hn−1(W ∗)
δ−→ Hn(U∗)

i∗−→ Hn(V ∗)
p∗−→ Hn(W ∗)

δ−→ Hn+1(U∗)→ · · ·

▶ Idea: δ = i−1dp−1 = (Hn(W ∗) V n V n+1 Hn+1(U∗))
p−1

d i−1

▶ Definition: a snake is (c,w , v , u, a) where
(1) c ∈ Hn(W ∗); (2) w ∈ Z n(W ∗) with c = [w ];
(3) v ∈ V n with p(v) = w ; (4) u ∈ Z n+1(U∗) with i(u) = d(v);
(5) a = [u] ∈ Hn+1(U∗).

▶ Idea: v is a choice of p−1(c), a is a choice of i−1(d(v)) = i−1(d(p−1(c))).
▶ Claim: for c ∈ Hn(W ∗), there is a snake (c,w , v , u, a) starting with c.

Any two choices have the same a so we can define δ(c) = a giving
δ : Hn(W ∗)→ Hn+1(U∗).

▶ Proof: By definition of Hn(W ∗) there exists w as in (2). As p is surjective
there exists v as in (3). Now p(d(v)) = d(p(v)) = d(w) = 0 so
d(v) ∈ ker(p) = img(i) so there exists u ∈ Un+1 with i(u) = d(v). Also
i(d(u)) = d(i(u)) = d2(v) = 0 but i is injective so d(u) = 0 so u is as in
(4). We define a = [u] so (5) holds. Uniqueness is similar.



The Snake Lemma

▶ Let U∗ i−→ V ∗ p−→W ∗ be a SES of cochain complexes and chain maps

▶ δ : Hn(W ∗)→ Hn+1(U∗) with δ(c) = a iff there is a snake (c,w , v , u, a)
i.e. (1) c ∈ Hn(W ∗); (2) w ∈ Z n(W ∗) with c = [w ];
(3) v ∈ V n with p(v) = w ; (4) u ∈ Z n+1(U∗) with i(u) = d(v);
(5) a = [u] ∈ Hn+1(U∗).

▶ Claim: the following sequence is exact:

· · · → Hn−1(W ∗)
δ−→ Hn(U∗)

i∗−→ Hn(V ∗)
p∗−→ Hn(W ∗)

δ−→ Hn+1(U∗)→ · · ·

i.e. i∗δ = 0, p∗i∗ = 0, δp∗ = 0,
ker(i∗) ≤ img(δ), ker(p∗) ≤ img(i∗), ker(δ) ≤ img(p∗).

▶ For i∗δ = 0: i∗(δ(c)) = i∗([u]) = [i(u)] = [d(v)] = 0.

▶ For p∗i∗ = 0: p∗(i∗([u])) = p∗([i(u)]) = [p(i(0))] = [0] = 0.

▶ For δp∗ = 0: if v ∈ Z n(V ∗) then d(v) = 0 = i(0) so we have a snake
(p∗([v ]), p(v), v , 0, 0).

▶ For ker(i∗) ≤ img(δ): suppose u ∈ Z n(U∗) with i∗([u]) = 0. Then
[i(u)] = 0 so i(u) = d(v) for some v ∈ V n−1. Then
d(p(v)) = p(d(v)) = p(i(u)) = 0 so we have a snake
([p(v)], p(v), v , u, [u]) giving [u] = δ([p(v)]) ∈ img(δ).

▶ The rest is similar.

The Mayer-Vietoris Sequence

▶ Suppose U
i−→ X

j←− V are inclusions of open sets with X = U ∪ V .

S0
n (X ) = {u : ∆n → X | u(∆n) ⊆ U ∩ V }

S1
n (X ) = {u : ∆n → X | u(∆n) ⊆ U, u(∆n) ̸⊆ V }

S2
n (X ) = {u : ∆n → X | u(∆n) ̸⊆ U, u(∆n) ⊆ V }

S3
n (X ) = {u : ∆n → X | u(∆n) ̸⊆ U, u(∆n) ̸⊆ V } = {large n-simplices}

Ak
n = Map(Sk

n ,Z)
C∗(X ) = A∗

0 × A∗
1 × A∗

2 × A∗
3 =: A∗

C∗(U) = A∗
0 × A∗

1 = A∗/I ∗ where I ∗ = A∗
2 × A∗

3

C∗(V ) = A∗
0 × A∗

2 = A∗/J∗ where J∗ = A∗
1 × A∗

3

C∗(U ∩ V ) = A∗
0 = A∗/(I ∗ + J∗)

C∗
small(X ) = A∗

0 × A∗
1 × A∗

2 = A∗/(I ∗ ∩ J∗)

▶ We have a short exact sequence

C∗
small(X )

[
k∗

l∗
]

−−−→ C∗(U)× C∗(V )
[ i∗ −j∗ ]−−−−−→ C∗(U ∩ V )

giving a Mayer-Vietoris type sequence

· · · → Hn−1(U∩V ) → Hn
small(X ) → Hn(U)×Hn(V ) → Hn(U∩V ) → Hn+1

small(X ) → · · ·

The Mayer-Vietoris Sequence

▶ Suppose U
i−→ X

j←− V are inclusions of open sets with X = U ∪ V .

▶ Put A∗ = C∗(X ) and C∗
small(X ) = A∗/K∗ where

K∗ = I ∗ ∩ J∗ = ker(i∗) ∩ ker(j∗) = C∗
big(X ).

▶ The short exact sequence K∗ → A∗ → A∗/K∗ gives an exact sequence

Hn(K∗)→ Hn(A∗) = Hn(X )→ Hn(A∗/K∗) = Hn
small(X )

δ−→ Hn+1(K∗)

▶ Claim: H∗(K∗) = 0. Given this, the above gives H∗(X ) = H∗
small(X )

so we have the Mayer-Vietoris sequence as originally stated.

▶ Why is H∗(K∗) = 0? First K 0 = 0 so H0(K∗) = 0 and H1(K∗) = Z 1(K∗).

▶ Consider a path u : [0, 1] = ∆1 → X and let u0, u1 be the first and second
halves. Define p : ∆2 → ∆1 by p(t0, t1, t2) = (t0 + t1/2, t1/2 + t2).
If f ∈ Z 1(K∗) then using (df )(u ◦ p) = 0 we get f (u) = f (u0) + f (u1).
Repeat: f (u) is a sum of 2N terms, each f applied to a small piece of u.
Eventually all the pieces lie in U or in V , so f (u) = 0.

▶ To prove Hn(K∗) = 0 in general, we need to subdivide ∆n into smaller
copies of ∆n and also define a map ∆n+1 → ∆n analogous to p.
This can be done by explicit combinatorics or by a more abstract method
(“acyclic models”).

Cohomology of spheres

▶ Claim: For n ≥ 0 there is an element un ∈ Hn(Sn) such that
H∗(Sn) = Z⊕ Zun.

▶ For n = 0: the space S0 = {1,−1} is discrete, so Hn(S0) = 0 for n ̸= 0
and H0(S0) = Map(S0,Z). We put u0(1) = 01 and u0(−1) = 1 so
H0(S0) = Z⊕ Zu0.

▶ For n > 0, we put N = (0, . . . , 0, 1) ∈ Sn and U = Sn \ {−N} and
V = Sn \ {N} so Sn = U ∪ V .

▶ For (x , t) ∈ U ∩ V = Sn \ {N,−N} we have ∥x∥2 + t2 = 1 with |t| < 1 so
x ̸= 0; so we can define r : U ∩ V → Sn−1 by r(x , t) = x/∥x∥.

▶ We also have δ : Hn−1(U ∩ V )→ Hn(Sn) and we put un = δ(r∗(un−1)).

▶ Stereographic projection: U ≃ V ≃ Rn (contractible) so
H0(U) = H0(V ) = Z but Hn(U) = Hn(V ) = 0 otherwise.

▶ i : Sn−1 → U ∩ V by i(x) = (x , 0) has ri = 1 and h : ir ≃ 1 by
h(s, (x , t)) = (x , st)/∥(x , st)∥. Thus
H∗(U ∩ V ) ≃ H∗(Sn−1) = Z⊕ Zun−1.



Cohomology of the circle

0 H0(S1) H0(U)× H0(V ) H0(S0)

H1(S1) H1(U)× H1(V ) H1(S0)

H2(S1) H2(U)× H2(V ) H2(S0)

H3(S1) H3(U)× H3(V ) H3(S0) · · ·

α β

δ

δ

δ

0 Z Z× Z Z{1, u0}

H1(S1) 0 0

H2(S1) 0 0

H3(S1) 0 0 · · ·

α β

δ

δ

δ

▶ α(n) = (n, n) and β(p, q) = (q − p).1.
▶ It follows that H0(S1) = Z and H1(S1) = Zu1 and Hn(S1) = 0 otherwise,

as claimed.

Cohomology of the sphere

0 H0(S2) H0(U)× H0(V ) H0(S1)

H1(S2) H1(U)× H1(V ) H1(S1)

H2(S2) H2(U)× H2(V ) H2(S1)

H3(S2) H3(U)× H3(V ) H3(S1) · · ·

α β

δ

δ

δ

0 Z Z× Z Z

H1(S2) 0 Zu1

H2(S2) 0 0

H3(S2) 0 0 · · ·

α β

δ=0

δ

δ

▶ α(n) = (n, n) and β(p, q) = (q − p).1.
▶ It follows that H0(S2) = Z and H2(S2) = Zu2 and Hn(S2) = 0 otherwise,

as claimed.
▶ The same argument gives the calculation of Hn(Sn) for all n > 2: we have

H0(Sn) = Z and Hn(Sn) = Zun and Hk(Sn) = 0 otherwise.
▶ Also Rn+1 \ {0} is homotopy equivalent to Sn and so has the same

cohomology.
▶ For n > 0 we have u2

n ∈ H2n(Sn) = 0 so u2
n = 0.

Distinguishing spheres and euclidean spaces

▶ We proved: H∗(Sn) = Z⊕ Zun with un ∈ Hn(Sn).

▶ Thus: if n ̸= m then H∗(Sn) ̸≃ H∗(Sm) as graded rings
so Sn is not homotopy equivalent to Sm.

▶ Recall that Rn+1 \ {0} is homotopy equivalent to Sn.
Thus, if n ̸= m then Rn+1 \ {0} is not homotopy equivalent to Rm+1 \ {0}.

▶ Also R0 \ {0} = ∅,
so if p ̸= q then Rp \ {0} is not homotopy equivalent to Rq \ {0}.

▶ Given a homeomorphism f : Rp → Rq, we can define g(x) = f (x)− f (0)
with g−1(y) = f −1(y + f (0)); this gives another homeomorphism with
g(0) = 0. This in turn gives a homeomorphism Rp \ {0} → Rq \ {0} so
p = q.

▶ Conclusion: if p ̸= q then Rp is not homeomorphic to Rq.

▶ This is very easy to believe but very hard to prove without cohomology.

The Brouwer fixed point theorem

▶ Lemma: if i : Sn−1 → Bn is the inclusion then there is no continuous map
r : Bn → Sn−1 with ri = 1: Sn−1 → Sn−1.

▶ Proof: Cases n = 0, 1 (with S−1 = ∅) are easy so take n > 1.

▶ If ri = 1 then the composite

Z = Hn−1(Sn−1)
i∗−→ Hn−1(Bn) = 0

r∗−→ Hn−1(Sn−1 = Z

is the identity, but that is impossible.

▶ Theorem (Brouwer): if f : Bn → Bn is continuous, then there exists
x ∈ Bn with f (x) = x .

▶ Proof: suppose not. Then for each x we can draw a line from f (x) to x
and extend it until we hit the boundary at a point r(x) ∈ Sn−1.

f (x) x

r(x)

▶ If x ∈ Sn−1 we just have r(x) = x .
One can check that r is continuous, so this contradicts the lemma.



Cohomology of X × Y

Suppose we have two spaces X and Y , and thus projections X
p←− X ×Y

q−→ Y .
Given a ∈ H r (X ) and b ∈ Hs(Y ) we define a×b = p∗(a)q∗(b) ∈ H r+s(X ×Y );
this is called the external product of a and b.

This construction gives a map µ : H∗(X )⊗ H∗(Y ) −→ H∗(X × Y ), with
µ(a⊗ b) = a× b.

Here M ⊗ N ≃ N ⊗M; (L⊕M)⊗ N ≃ (L⊗ N)⊕ (M ⊗ N); Z⊗M ≃ M;
(Z/r)⊗M = M/rM; Zn ⊗ Zm ≃ Znm; Z/r ⊗ Z/s ≃ Z/gcd(r , s)

The map µ is an isomorphism if each group H r (X ) is free and finitely
generated (this is a special case of the Künneth theorem).

Now consider the inclusions X
i−→ X ⨿ Y

j←− Y and the resulting map
H∗(X ⨿ Y )→ H∗(X )×H∗(Y ), given by a 7→ (i∗(a), j∗(a)). This is easily seen
to be an isomorphism.

The definition of a manifold

Definition
A topological manifold of dimension n is a second countable, Hausdorff
topological space M such that each point x ∈ M has an open neighbourhood
U ⊆ M such that U is homeomorphic to Rn.

The space on the left is a manifold of dimension 2; the one on the right is not.

Open subsets of Rn

Example

Let U be the open ball of radius ϵ > 0 around a point x ∈ Rn. Then there is
a homeomorphism f : U → Rn:

f (y) =
y − x

1− ∥y − x∥2/ϵ2 f −1(z) = x +

√
ϵ2 + 4∥z∥2 − ϵ

2∥z∥2 ϵz

It follows that any open subspace of Rn is an n-dimensional topological
manifold.
An interesting special case is

FnC := {z ∈ Cn | zi ̸= zj when i ̸= j}.

This can be viewed as an open subspace of Cn ≃ R2n; we will study its
cohomology later.

Vector spaces

Convention
Many examples below will involve vector spaces. Everywhere in these notes,
vector spaces are assumed finite dimensional unless otherwise specified, and the
scalar field is R unless otherwise specified.

Example

Let V be a vector space of dimension n. There is a natural topology on V (the
smallest one for which all linear maps V −→ R are continuous) and with this
topology V is homeomorphic to Rn. Thus V is a topological manifold.



Spheres

Example

Now suppose that V is equipped with an inner product, and define the sphere
S(V ) as {x ∈ V | ∥x∥ = 1}.
For x ∈ S(V ) put Ux = {y ∈ S(V ) | ⟨x , y⟩ > 0} and Vx = {z | ⟨x , z⟩ = 0}.
Define fx : Vx −→ Ux by fx(z) = (x + z)/

√
1 + z2.

Vx

Ux

x

fx(z)

z

x + z

One can check that this is a homeomorphism, and also Vx is a vector space of
dimension n − 1 so it is homeomorphic to Rn−1. It follows that S(V ) is a
manifold of dimension n − 1. It is easy to see that it is compact.

Complex projective space

Let V have dimension m over C. Put PV = {lines in V }.
Define q : V× = V \ {0} → PV by q(x) = [x ] = Cx . This is surjective, and we
give PV the quotient topology. Claim: this makes PV a topological manifold.
Indeed, given a line L ∈ PV choose W with V = L⊕W , and put
U = {M ∈ PV | M ∩W = 0}. Then U is an open neighbourhood of L in PV .
We can define f = fL,W : Hom(L,W )→ PV by

f (α) = graph(α : L→W ) = (1 + α)(L) ≤ L+W = V .

x

α(x)

L

W

(1 + α)(L)

One can check that this gives a homeomorphism from
Hom(L,W ) ≃ Cn−1 ≃ R2n−2 to U, so U is a chart domain around L.
For V = Cm+1: PV = CPm, [z0 : · · · : zm] = C.(z0, . . . , zm)

Some projective varieties

Suppose that m ≤ n. The Milnor hypersurface in CPm × CPn is the space

Hm,n = {([z], [w ]) ∈ CPm × CPn |
m∑
i=0

ziwi = 0}.

Suppose that d > 2. The Fermat hypersurface of degree d in CPm is

Xd,m = {[z] ∈ CPm |
m∑
i=0

zdi = 0}.

Consider the space

C = {[x : y : z] ∈ CP2 | y 2z = x(x − z)(x + z)}.

This is an example of an elliptic curve. It is homeomorphic to the torus
S1 × S1.

Grassmannians and flag varieties

Let Gk(V ) be the set of k-dimensional subspaces of V ≃ Cd .
(So PV = G1(V ).)
This is again a compact manifold, of dimension 2k(d − k).

Indeed, given A ∈ Gk(V ) we can choose a subspace B ∈ Gd−k(V ) with
V = A⊕ B. We find that the set U = {A′ ∈ Gk(V ) | A′ ∩ B = 0} is an open
neighbourhood of A, and that we have a homeomorphism Hom(A,B)→ U
given by α 7→ graph(α) = (1 + α)(A).

A complete flag in V is a sequence of complex subspaces
0 = W0 <W1 < . . . <Wd = V such that dim(Wk) = k for all k. The space of
complete flags is written Flag(V ); it is again a compact manifold, of dimension
d2 − d .

A flag W in V = Cd is bounded if Wk ≤ Ck+1 for all k. The set Bd of bounded
flags is a manifold of dimension 2d − 2. It is an example of a toric variety: there
is an action of the group (C×)d−1 that is nearly free and nearly transitive.



Unitary groups

Let V be a complex vector space of dimension d .
Suppose we have a Hermitian inner product (so that ⟨u, v⟩ = ⟨v , u⟩ and
z⟨u, v⟩ = ⟨zu, v⟩ = ⟨u, zv⟩ when z ∈ C and u, v ∈ V ).
Any endomorphism α of V has an adjoint α†, with ⟨α(u), v⟩ = ⟨u, α†(v)⟩. Put

U(V ) = {α ∈ Aut(V ) | α† = α−1} = the unitary group of V .

u(V ) = {β ∈ End(V ) | β† = −β}.

After choosing an orthonormal basis for V , it is not hard to check that u(V )
is a real vector space of dimension d2.
Also, if β ∈ u(V ) we see that the eigenvalues of β are purely imaginary, so that
the maps 1± β/2 are invertible. For any α ∈ U(V ) we define
fα : u(V ) −→ Aut(V ) by

fα(β) = (1 + β/2)(1− β/2)−1α.

One checks that this gives a homeomorphism of u(V ) with a neighbourhood of
α in U(V ). It follows that U(V ) is a topological manifold.

Lens spaces

Now consider Cn = ⟨ω⟩ < C×, where ω = e2πi/n.

This acts by multiplication on S(V ) ≃ S(Cd) ≃ S2d−1, so we can put
L = S(V )/Cn.

Claim: L is a manifold of dimension 2d − 1.

To see this, let π : S(V ) −→ S(V )/Cn be the projection map, and note that
π−1π(U) =

⋃d−1
k=0 ω

kU; this implies that π is an open map.
Next put ϵ = |ω − 1|/2, and for v ∈ S(V ) put
Nϵ(v) = {w ∈ S(V ) | ∥v − w∥ < ϵ}. One checks easily that
∥ωku − u∥ ≥ 2ϵ∥u∥ and thus that π : Nϵ(v) −→ S(V )/Cn is injective.
It follows that π : Nϵ(v) −→ πNϵ(v) is a homeomorphism and that the codomain
is open in S(V ); this shows that S(V )/Cn is a manifold.
We will see that H2(S(V )/Cn) ≃ Z/n. This is our first example where the
cohomology is not a free abelian group.

Knot surgery

Let j be an embedding of the solid torus S1 × D2 in R3 ⊂ S3, whose image
K = j(S1 × D2) is a knot.

If we remove the interior of K we get a space X0 with boundary
∂(X0) = S1 × S1.

This is the same as the boundary of X1 = D2 × S1.

We can thus glue X0 and X1 along their boundaries to get a new manifold
called X . This is the most basic example of surgery: making new manifolds
from old by cutting and gluing.

Cohomology of punctured euclidean space

▶ Consider a list a1, . . . , an of distinct points in Rd (with d > 1) and put
M = Rd \ {a1, . . . , an}.

▶ Define fi : M → Sd−1 by fi (x) = (x − ai )/∥x − ai∥ and put
vi = f ∗i (ud−1) ∈ Hd−1(M).

▶ As u2
d−1 = 0 and f ∗i is a ring map we have v 2

i = 0.

▶ Claim: we have H0(M) = Z and Hd−1(M) = Z{v1, . . . , vn} and
Hk(M) = 0 otherwise.

▶ For n = 0 or n = 1 we have seen this already.

▶ For n > 1, put A = Rd \ {a1, . . . , an−1} and B = Rd \ {an} so M = A ∩ B
and A ∪ B = V (contractible).

▶ We have a Mayer-Vietoris sequence

0 = Hd−1(V )→ Hd−1(A)⊕ Hd−1(B)→ Hd−1(M)
δ−→ Hd(V ) = 0,

so Hd−1(M) ≃ Hd−1(A)⊕ Hd−1(B) ≃ Hd−1(A)⊕ Z.vn.
▶ A bit more work with the same Mayer-Vietoris sequence proves the full

claim.

▶ In particular, vivj = 0 for all i and j (because H2d−2(M) = 0).



Cohomology of configuration space

▶ FnC = {z ∈ Cn | zp ̸= zq for all p ̸= q}.
▶ fpq : FnC→ S1 by fpq(z) = (zq − zp)/|zq − zp|; apq = f ∗pq(u1) ∈ H1(FnC).
▶ Using h(t, z) = eπit fpq(z) we see that fpq ≃ fqp and aqp = apq.
▶ As f ∗pq is a ring map and u2

1 = 0 we get a2pq = 0.
▶ Define g : F3C→ C× C× × (C \ {0, 1}) by g(z) = (z0, z1 − z0,

z2−z0
z1−z0

).

This is a homeomorphism, with g−1(u, v ,w) = (u, u + v , u + vw).
▶ Here H∗(C) = Z, H∗(C×) = Z[u]/u2 and

H∗(C \ {0, 1}) = Z[v1, v2]/(v 2
1 , v1v2, v

2
2 ).

▶ Thus, Künneth gives H∗(F3C) = H∗(C)⊗ H∗(C×)⊗ H∗(C \ {0, 1}) =
Z[u, v0, v1]/(u2, v 2

1 , v1v2, v
2
2 ) = Z{1, u, v0, v1, uv0, uv1}.

▶ One checks that a01 = a10 = u and a02 = a20 = u + v0 and
a12 = a21 = u + v1. It follows that
a01a12 + a12a20 + a20a01 = u(u + v1) + (u + v1)(u + v0) + (u + v0)u =
3u2 + uv1 + v1u + uv0 + v0u = 0.

▶ More generally, given distinct i , j , k we define q : FnC→ F3C by
q(z) = (zi , zj , zk), so q∗a01 = aij and q∗a12 = ajk and q∗a20 = aki .

▶ By applying q∗ to our relation in H∗(F3C) we get
aijajk + ajkaki + akiaij = 0 in H∗(FnC).

▶ Thus all the claimed relations are valid in H∗(FnC); we still need to check
that there are no additional generators or relations.

Fibre bundle cohomology

▶ Consider a continuous map p : E → B
with fibres Fb = p−1{b} for b ∈ B and inclusions ib : Fb → E .

▶ Suppose we have a basis x1, . . . , xn for H∗(B),
and elements y1, . . . , ym ∈ H∗(E) such that
i∗b (y1), . . . , i

∗
b (ym) is always a basis for H∗(Fb).

▶ Expectation: p∗(x1)y1, . . . , p
∗(xn)ym should be a basis for H∗(E).

▶ If p = (B × F
proj−−→ B) then this follows from the Künneth Theorem.

▶ More generally, it works for fibre bundles.

▶ Say U ⊆ X is even if (p−1(U)
p−→ U) is like (U × F

proj−−→ U).

▶ Say p is a fibre bundle if B can be covered by even open sets.

▶ Define ϕU : A(U)∗ =
⊕m

i=1 H
∗−|yi |(U)→ B(U)∗ = H∗(p−1(U)) by

ϕU(a1, . . . , am) =
∑

i p
∗(ai )yi .

▶ If U is even then ϕU is an isomorphism by Künneth.

▶ Claim: if U is even and ϕV is an isomorphism then so is ϕU∪V .

▶ If B is compact then B = U1 ∪ · · · ∪ Up with Ui even and we conclude
that ϕB is an isomorphism.

▶ This also works if B is not compact, by a limit argument.

The Five Lemma

Lemma
Suppose we have a commutative diagram with exact rows:

A B C D E

A′ B ′ C ′ D ′ E ′

p

α≃

q

β ≃

r

γ

s

δ≃ ϵ≃

p′ q′ r′ s′

If α, β, δ and ϵ are isomorphisms, then so is γ.

Proof Suppose that c ∈ ker(γ).
Then δr(c) = r ′γ(c) = 0, but δ is iso, so r(c) = 0.
By exactness c = q(b) for some b ∈ B.
Now q′β(b) = γq(b) = γ(c) = 0.
By exactness β(b) = p′(a′) for some a′ ∈ A′.
Put a = α−1(a′) ∈ A, so βp(a) = p′α(a) = p′(a′) = β(b)
As β is iso, this gives p(a) = b.
We now have c = q(b) = qp(a) = 0, proving that γ is injective.
A similar type of argument proves surjectivity.

The induction step

E
p−→ B yj ∈ H∗(E) Ak(U) =

⊕
j H

k−|yj |(U)
ϕU−−→ Bk(U) = H∗(p−1(U))

For each b ∈ B, the elements i∗b (yj) give a basis of H∗(Fb).

▶ For open sets U,V ⊆ B we have Mayer-Vietoris sequences for (U,V ) and
for (p−1(U), p−1(V )) giving a diagram as follows:

Ak−1U × Ak−1V Ak−1(U ∩ V ) Ak (U ∪ V ) AkU × AkV Ak (U ∩ V )

Bk−1U × Bk−1V Bk−1(U ∩ V ) Bk (U ∪ V ) BkU × BkV Bk (U ∩ V )

ϕU×ϕV ϕU∩V ϕU∪V ϕU×ϕV ϕU∩V

▶ If ϕU , ϕV and ϕU∩V are isomorphisms, then so is ϕU∪V , by the Five
Lemma.

▶ Suppose U is even and ϕV is iso. Then U ∩ V is also even so ϕU and
ϕU∩V are also iso, so ϕU∪V is iso.

▶ Thus: if B can be covered by finitely many even open sets, then ϕB is iso.

▶ Remark: We have made the strong assumption that there are elements
yj ∈ H∗(E) giving a basis for each H∗(Fb). Without that assumption we
need to use the Serre Spectral Sequence H i (B;H j(F )) =⇒ H i+j(E) which
is much more complicated.



Application to configuration space

▶ Define p : Fn+1C→ FnC by p(z0, . . . , zn) = (z0, . . . , zn−1).

▶ One can check that this is a fibre bundle.

▶ For z = (z0, . . . , zn−1) ∈ FnC we have p−1{z} ≃ C \ {z0, . . . , zn−1}
so H∗(p−1{z}) = Z{1, v0, . . . , vn−1} = Z{1, i∗(a0,n), . . . , i∗(an−1,n)}.

▶ Thus the fibre bundle theorem gives
H i (Fn+1C) = H i (FnC)⊕

⊕n−1
j=0 H i−1(FnC).ajn

▶ From F3C ≃ C× C× × (C \ {0, 1}) we obtained
H∗(F3C) = Z{1, a01, a02, a12, a01a02, a01a12}.

▶ It follows that the following set is a basis for H∗(F4C):

1 a01 a02 a12 a01a02 a01a12
a03 a01a03 a02a03 a12a03 a01a02a03 a01a12a03
a13 a01a13 a02a13 a12a13 a01a02a13 a01a12a13
a23 a01a23 a02a23 a12a23 a01a02a23 a01a12a23

▶ In particular, H∗(F4C) is generated as a ring by the elements apq.

▶ With a bit more pure algebra, we can also check that all relations follow
from the relations apq = aqp, a

2
pq = 0 and apqaqr + aqrarp + arpapq = 0

mentioned previously.

Cohomology of complex projective space

▶ CPn = {[z] | z ∈ Cn+1 \ {0}}, where [z] = [z ′] iff z ′ ∈ C×z .
▶ CP1 ≃ C ∪ {∞} ≃ S2 by [z0 : z1] 7→ z0/z1,

so H∗(CP1) = Z{1, x} = Z[x ]/x2 with x ∈ H2(CP1).
▶ Claim: H∗(CPn) = Z[x ]/xn+1 with x ∈ H2(CPn).
▶ Or: H2k(CPn) = Z.xk for 0 ≤ k ≤ n but H j(CPn) = 0 otherwise.
▶ Put U = {[z] ∈ CPn | zn ̸= 0} and V = {[z] ∈ CPn | (z0, . . . , zn−1) ̸= 0}.
▶ The map [z] 7→ (z0, . . . , zn−1)/zn gives U ≃ Cn and U ∩ V ≃ Cn \ {0}, so

H∗(U) = Z and H∗(U ∩ V ) = Z{1, u2n−1}.
▶ We have V

r−→ CPn−1 s−→ V by r([z]) = [z0, . . . , zn−1] and
s([z0, . . . , zn−1]) = [z0, . . . , zn−1, 0]. Clearly rs = 1, and using
h(t, [z]) = [z0, . . . , zn−1, tzn] we get 1 ≃ sr . Thus
H∗(V ) ≃ H∗(CPn−1) = Z[x ]/xn.

▶ For p > 0 we now have a Mayer-Vietoris sequence

Hp−1(CPn−1)
k∗−→ Hp−1(S2n−1)

δ−→ Hp(CPn)
i∗−→ Hp(CPn−1)

k∗−→ Hp(S2n−1)

For most p the second and last terms are zero so Hp(CPn) ≃ Hp(CPn−1).
In particular we have x ∈ H2(CPn) and H2j(CPn) = Z.x j for 0 ≤ j < n.

▶ One exception is the case p = 2n when we get H2n(CPn) = Z.δ(u2n−1).
Different methods are needed to show that δ(u2n−1) = ±xn, completing
the induction.

Cohomology of Milnor hypersurfaces

▶ Let CPm p←− CPm × CPn q−→ CPn be the projection maps.

▶ We have seen that H∗(CPm) = Z[x ]/xm+1 and H∗(CPn) = Z[x ]/xn+1.

▶ Put y = p∗(x) and z = q∗(x) so Künneth gives

H∗(CPm × CPn) = Z[y , z]/(ym+1, zn+1) = Z{y iz j | i ≤ m, j ≤ n}.

▶ Now suppose that m ≤ n and put
M = Milnor hypersurface = {([z], [w ]) ∈ CPm × CPn |

∑m
i=0 ziwi = 0}.

There are restricted projections CPm p1←− M
q1−→ CPn.

▶ p−1
1 {[z]} = P(Vz), where Vz = {w |

∑m
i=0 ziwi = 0}, so

{z j | 0 ≤ j < n − 1} gives a basis for H∗(p−1
1 {[z]}).

▶ Fibre bundle theorem: {y iz j | i < m, j < n − 1} is a basis for H∗(M).

▶ In particular zn−1 is expressible in terms of 1, z , . . . , zn−2.

▶ It turns out that

H∗(M) = Z[y , z]/(ym, zn−1 − yzn−2 + . . .± yn−1)

= Z{y iz j | i ≤ m, j < n}

Cohomology of Fermat hypersurfaces

▶ Fix d , n > 2 and put
M = Fermat hypersurface = {[z] ∈ CP2n |

∑2n
k=0 z

d
k = 0}.

▶ Claim: there are elements x ∈ H2(M) and y ∈ H2n(M) with
H∗(M) = Z{1, x , . . . , xn−1, y , xy , . . . , xn−1y} = Z[x , y ]/(y 2, xn − dy).

▶ Start of the proof: put ω = e iπ/d and define j : CPn−1 j−→ M
r−→ CP2n−1 by

j([z0, . . . , zn−1]) = [z0, . . . , zn−1, ωz0, . . . , ωzn−1, 0].

▶ Also note that for [z] ∈ M we have (z0, . . . , z2n−1) ̸= 0 so can define
r : M → CP2n−1 by r([z0, . . . , z2n]) = [z0, . . . , z2n−1].

▶ This gives Z[x ]/x2n r∗−→ H∗(M)
j∗−→ Z[x ]/xn with rj homotopic to the

inclusion CPn−1 → CP2n−1 and so j∗(r∗(x)) = x .

▶ A typical point [w ] ∈ CP2n−1 has preimage r−1{[w ]} ⊂ M of size d
(because a nonzero complex number has d different dth roots). From this
we can deduce by degree theory that x2n−1 is divisible by d in H4n−2(M).

▶ Define f : CP2n → [0, 1] by f ([z]) = |
∑

k z
d
k |/

∑
k |z

d
k |, so M = f −1{0}.

We can try to deform CP2n onto M by moving in the direction of steepest
decrease of f . This fails because of stationary points, but the failure is
controlled by Morse theory, which gives homological information.



Cohomology of flag spaces

▶ Recall that Flag(V ) is the space of all lists (W0, . . . ,Wd) where
0 = W0 <W1 < . . . <Wd = V with dimC(Wi ) = i .

▶ We can define pi : Flag(V )→ PV by pi (W ) = Wi ⊖Wi−1 (the orthogonal
complement of Wi−1 in Wi ). This gives xi = p∗

i (x) ∈ H2(Flag(V )).

▶ Let sk be the k’th elementary symmtric polynomial, i.e. the sum of all
terms like xi1 · · · xik with i1 < · · · < ik , or the coefficient of td−k in∏

i (t + xi ).

▶ We will show later that H∗(Flag(V )) = Z[x1, . . . , xd ]/(s1, . . . , sd).
▶ Let B be the set of monomials xn1

1 . . . xnd
d with 0 ≤ ni < i for all i ; then B

is a basis for H∗(Flag(V )).

▶ To prove these statements, we will need to generalise them, to give
statements that can be proved inductively using the fibre bundle theorem.

Relative and reduced cohomology

▶ For Y ⊆ X put C∗(X ,Y ) = ker(i∗ : C∗(X )→ C∗(Y )) and
H∗(X ,Y ) = H∗(C∗(X ,Y )) (relative cohomology).

▶ This is a nonunital ring and a module over H∗(X ).

▶ The short exact sequence C∗(X ,Y )→ C∗(X )→ C∗(Y ) gives a long
exact sequence

Hk−1(Y )
δ−→ Hk(X ,Y )

θ−→ Hk(X )
i∗−→ Hk(Y )

δ−→ Hk+1(X ,Y ).

▶ H∗(Rn,Rn \ {0}) = H∗(Bn, Sn−1) = Z.vn where vn = δ(un−1) ∈ Hn.

▶ The maps δ and θ are H∗(X )-linear (with ±-signs).
▶ If X has a specified basepoint ∗ ∈ X we put C̃ k(X ) = C k(X , {∗}) and

H̃k(X ) = Hk(X , {∗}) =

{
Hk(X ) if k > 0

{u : π0(X )→ Z | u(∗) = 0} if k = 0

▶ H̃∗(Rn \ {0}) = H̃∗(Sn−1) = Z.un−1.

Collapse and excision

▶ For closed Y ⊆ X we let X/Y be the quotient space where Y is collapsed
to a single point, taken as the basepoint.

S1 S2 S2/S1

▶ The collapse p : X → X/Y induces p∗ : H̃∗(X/Y )→ H∗(X ,Y ),
which is usually iso (when Y is closed).

▶ This works for submanifolds of manifolds, subcomplexes of simplicial
complexes, subsets of Rn defined by polynomial inequalities.

▶ It can fail if X has an infinite amount of topological structure arbitrarily
close to Y as with fractals.

▶ Keywords: excision and neighbourhood deformation retract.

▶ If U ⊆ X is open we can often find Y ⊆ U with Y closed in X such that
Y → U is a homotopy equivalence;
then H∗(X ,U) = H∗(X ,Y ), which is usually H̃∗(X/Y ).

▶ Example: Hn−1(Rn,Rn \ {0}) = Hn(Bn,Bn \ {0}) = Hn(Bn, Sn−1) =

H̃n(Bn/Sn−1) = H̃n(Sn) = Z.

Cohomology of the unitary group

▶ Claim: H∗(U(n)) is freely generated by elements
a2k−1 ∈ H2k−1(U(n)) for 1 ≤ k ≤ n with a2i = 0.

▶ H∗(U(3)) = E [a1, a3, a5] = Z{1, a1, a3, a5, a1a3, a1a5, a3a5, a1a3a5}

▶ U(1) = S1 and U(2) = S1 × S3 by (a, b, c) 7→
[
ab −c
ac b

]
.

For n > 2 the spaces U(n) and P(n) =
∏n

k=1 S
2k−1 have isomorphic

cohomology rings but are not homotopy equivalent.

▶ Define U(n)
i−→ U(n + 1)

p−→ S2n+1 by

i(A) =

[
A 0
0 1

]
p(B) = B.en+1 = last column of B.

▶ p−1{en+1} = i(U(n)), and p−1{u} = B.i(U(n)) for any B with
B.en+1 = u;
so p is a fibre bundle projection.

▶ If we knew that H∗(U(n)) = E [a1, . . . , a2n−1] and that there were
elements a2k−1 ∈ H2k−1(U(n + 1)) for k < n with i∗(a2k−1) = a2k−1 then
we could put a2n−1 = p∗(u2n−1) and the fibre bundle theorem would give
H∗(U(n + 1)) = E [a1, . . . , a2n+1].



The complex reflection map

▶ For z ∈ S1 and L ∈ CPn we put r(z , L) = z .1L ⊕ 1L⊥ on L⊕ L⊥ = Cn+1

or r(z , [u]).v = v + (z − 1)⟨v , u⟩u/⟨u, u⟩ ∈ v + L.

▶ This gives a continuous map r : S1 × CPn → U(n + 1).

▶ We also put r(z , L,A) = r(z , L).A giving r : S1 ×CPn ×U(n)→ U(n+1).

▶ We will see that this is “almost a homeomorphism”.

▶ Put Y = (S1 × CPn−1) ∪ ({1} × CPn) ⊂ S1 × CPn.

▶ For z = 1 we have p(r(1, L)) = r(1, L).en+1 = en+1 always. For z ̸= 1 we
have p(r(z , L)) = en+1 iff r(z , L).en+1 = en+1 iff en+1 ∈ L⊥ iff L ∈ CPn.

▶ Also, for A ∈ U(n) we have A.en+1 = en+1 so p(r(z , L,A)) = p(r(z , L)).

▶ Conclusion: p(r(z , L,A)) = en+1 iff (z , L,A) ∈ Y × U(n).

▶ Now consider w ∈ S2n+1 \ {e} where e = en+1.
Put z = ⟨w ,w − e⟩/⟨e,w − e⟩ and L = C.(w − e).
Calculation gives (z , L) ∈ (S1 × CPn) \ Y and r−1{w} = {(z , L)}.

▶ Using this: r induces a homeomorphism
Q = (S1 × CPn × U(n))/(Y × U(n))→ U(n + 1)/U(n).

▶ Thus: a long exact sequence relates H∗(U(n)), H∗(U(n + 1)) and H̃∗(Q).

▶ We will see that H̃k(Q) = 0 for k < 2n + 1, so
Hk(U(n + 1)) = Hk(U(n)) for k < 2n.

Cohomology of the unitary group

▶ Recall Y = (S1 × CPn−1) ∪ ({1} × CPn) ⊂ X = S1 × CPn.

▶ Now X \ Y = (S1 \ {1})× (CPn \ CPn−1)
and S1 \ {1} ≃ R (stereographically)
and CPn \ CPn−1 ≃ Cn ≃ R2n (by [z0 : . . . : zn] 7→ (z0, . . . , zn−1)/zn).

▶ Now X \ Y ≃ R2n+1 and X/Y ≃ (X \ Y ) ∪ {∞} ≃ R2n+1 ∪ {∞} ≃ S2n+1.

▶ This gives Q = (X × U(n))/(Y × U(n)) ≃ (S2n+1 × U(n))/({∗} × U(n))

so H̃∗(Q) = H∗(S2n+1 × U(n), {∗} × U(n)).

▶ Künneth gives H∗(S2n+1 × U(n)) = H∗(U(n))⊕ H∗(U(n)).u2n+1.

▶ The LES for relative cohomology then gives
H̃∗(Q) ≃ H∗(S2n+1 × U(n), {∗} × U(n)) = H∗(U(n)).u2n+1.

▶ But also Q ≃ U(n + 1)/U(n) so H∗(U(n + 1),U(n)) ≃ H∗(U(n)).u2n+1.

▶ For i < 2n we have H i (U(n + 1),U(n)) = H i+1(U(n + 1),U(n)) = 0 so
H i (U(n + 1)) ≃ H i (U(n)).

▶ Thus, for k ≤ n there is a unique a2k−1 ∈ H2k−1(U(n + 1)) that maps to
a2k−1 ∈ H2k−1(U(n)). We also put a2n+1 = p∗(u2n+1) ∈ H2n+1(U(n + 1)).

▶ The restriction i∗ : H∗(U(n + 1))→ H∗(U(n)) is a ring map that hits all
the generators, so it is surjective. Thus δ = 0 in the LES.

▶ We can now conclude that H∗(U(n + 1)) = E [a1, . . . , a2n+1].

Hopf algebras

▶ Define U(n)2
µ−→ U(n)

η←− 1 by µ(A,B) = AB and η(1) = I .
These make U(n) a Lie group.

▶ Putting A∗ = H∗(U(n)) = E [a1, a3, . . . , a2n−1] we get ring maps

A∗ ⊗ A∗ ψ=µ∗
←−−−− A∗ ϵ=η∗−−−→ Z.

▶ The associativity law says that µ(µ× 1) = µ(1× µ) : U(V )3 −→ U(V ),
and this implies that (ψ ⊗ 1)ψ = (1⊗ ψ)ψ : A∗ −→ (A∗)⊗3.
The unit laws imply that (ϵ⊗ 1)ψ = 1 = (1⊗ ϵ)ψ : A∗ −→ A∗.

A∗ A∗ ⊗ A∗ A∗ A∗ A∗ ⊗ A∗

A∗ A∗ ⊗ A∗ A∗ ⊗ A∗ ⊗ A∗

ϵ⊗1 1⊗ϵ ψ

ψ ψ⊗1
1

ψ
1

1⊗ψ

▶ A structure like this is called a Hopf algebra.

▶ We say that x ∈ An is primitive if ϵ(x) = 0 and ψ(x) = x ⊗ 1 + 1⊗ x .

▶ For A∗ = H∗(U(n)) = E [a1, . . . , a2n−1], the ring A∗ ⊗ A∗ is
E [b1, . . . , b2n−1, c1, . . . , c2n−1] where b2i−1 = π∗

0 (a2i−1), c2i−1 = π∗
1 (a2i−1).

▶ Claim: a2i−1 is primitive, i.e.
µ∗(a2i−1) = π∗

0 (a2i−1) + π∗
1 (a2i−1) = b2i−1 + c2i−1.

▶ Because µ∗ is a ring map, this determines µ∗ on all elements.

Proof of primitivity

▶ Claim: the map ψ = µ∗ : E [a1, . . . , a2n−1]→ E [b1, . . . , b2n−1, c1, . . . , c2n−1]
sends a2i−1 to b2i−1 + c2i−1.

▶ Put u2i−1 = ψ(a2i−1)− b2i−1 − c2i−1; we must show that u2i−1 = 0.

▶ From the counit laws (ϵ⊗ 1)ψ = (1⊗ ϵ)ψ = 1 we see that

u2i−1 ∈ I ∗ ⊗ I ∗ where I ∗ = ker(ϵ) = H̃∗(U(n)).

▶ The inclusion j : U(n − 1)→ U(n) is a group homomorphism with
H∗(U(n − 1)) = A∗/a2n−1; this gives a diagram

A∗ A∗ ⊗ A∗

A∗/a2n−1 (A∗ ⊗ A∗)/(b2n−1, c2n−1).

ψ

j∗ (j×j)∗

ψ

▶ For i < n we assume inductively that j∗(a2i−1) is primitive; also
j∗(a2n−1) = 0 is primitive. So u2i−1 ∈ J∗ = (b2n−1, c2n−1) for i ≤ n.

▶ For i < n we have J2i−1 = 0 so u2i−1 = 0.

▶ For i = n we have J2n−1 = Z{b2n−1, c2n−1} but I ∗ ⊗ I ∗ is generated by all
products b2p−1c2q−1 so (I ∗ ⊗ I ∗) ∩ J∗ is zero in degree 2n − 1.
Thus u2n−1 is zero as well.



Vector bundles

▶ A vector bundle over a space X is a collection of finite-dimensional vector
spaces Vx for each x ∈ X , “varying continuously”.

▶ There must be a given topology on the total space
EV = {(x , v) | x ∈ X , v ∈ Vx} such that p : (x , v) 7→ x is continuous.

▶ Say U ⊆ X is even if there is a homeomorphism p−1(U) ≃ Rd × U
compatible with projection and vector space structure.

▶ We require that X can be covered by even open sets.

▶ We usually assume that X is compact.

▶ It is harmless to assume that there are continuously varying inner products.

▶ Example: for z ∈ S1 put Vz = {w ∈ C | w 2 ∈ R+z} so
Vexp(iθ) = R. exp(iθ/2). This is a vector bundle, and EV is a Möbius strip.

▶ The tangent bundle of Sn is TxS
n = {v ∈ Rn+1 | ⟨x , v⟩ = 0}.

▶ The tautological bundle over CPn is TL = L, so
ET = {(v , L) | v ∈ L, L ≤ Cn+1, dim(L) = 1}.

▶ The image bundle over P = {A ∈ Mn(C) | A2 = A} is
WA = img(A) = ker(I − A).

▶ Many interesting spaces can be described in terms of vector bundles.

Thom spaces

▶ If V is a d-dimensional vector bundle over a compact space X we define
the Thom space XV as EV ∪ {∞}.

▶ We will prove the Thom Isomorphism Theorem:
if V is oriented then H̃k(XV ) ≃ Hk−d(X ).

▶ Many calculations can be deduced from this.

▶ Recall the Möbius bundle Vexp(iθ) = R. exp(iθ/2) over S1. Define

f : EV → RP2 = (R3 \ {0})/R× by f (e iθ, te iθ/2) = [cos(θ/2), sin(θ/2), t].
With f (∞) = [0, 0, 1] this gives (S1)V ≃ RP2.

▶ Recall the tautological bundle T over CPn with TL = L.
One can check that there is a well-defined f : ET → CPn+1 given by
f (v ,Cu) = C.(u, ⟨u, v⟩).
With f (∞) = C.en+1 this gives (CPn)T ≃ CPn+1.

▶ After choosing inner products we can put
B(V ) = {(x , v) ∈ EV | ∥x∥ ≤ 1} and S(V ) = {(x , v) ∈ EV | ∥x∥ = 1}
and EV× = {(x , v) ∈ EV | v ̸= 0}

▶ Recall that Rd ∪ {∞} ≃ Sd ≃ Bd/Sd−1.
By doing this in each fibre we get XV ≃ B(V )/S(V ).

▶ This gives H̃∗(XV ) = H∗(B(V ),S(V )) = H∗(EV ,EV×).

Orientations and Thom classes

▶ For a vector space V ≃ Rd , let Or(V ) be the set of generators of the
group Hd(V ,V×) ≃ Z (so |Or(V )| = 2).

▶ If V is a complex vector space, there is a canonical orientation
(because GLn(C) is connected).

▶ If V is a d-dimensional vector bundle over X , the set
Or(X ) = {(x , u) | x ∈ X , u ∈ Or(Vx)}
has a natural topology as a double cover of X .

▶ An orientation of V is a continuous choice of ux ∈ Or(Vx) for each x ∈ X .

▶ The Möbius bundle has no orientation;
but any complex bundle has a canonical orientation.

▶ A Thom class for V is an element u ∈ Hd(EV ,EV×) such that
i∗x (u) ∈ Hd(Vx ,V

×
x ) is a generator for all x ∈ X .

▶ Theorem (Thom): there is a natural bijection from Thom classes to
orientations. Moreover, if u is a Thom class then multiplication by u gives
an isomorphism Hk(X )→ Hk+d(EV ,EV×) ≃ H̃k+d(XV ).

▶ The proof is like the fibre bundle theorem. If U0,U1 are open in X , and
the claim holds for U0, and U1 is even, then the claim holds for U0 ∪U1 by
a Mayer-Vietoris sequence. The claim therefore holds for finite unions of
even sets, and thus for compact subsets of X .

The Euler class

▶ Let V be an oriented n-dimensional vector bundle over X , with Thom
class u(V ) ∈ H̃n(XV ).

▶ Define i : X → XV by i(x) = 0 ∈ Vx ⊂ XV .

▶ Put e(V ) = i∗(u(V )) ∈ Hn(X ). This is called the Euler class of V .

▶ If EV = R× X then i is homotopic to the constant map at ∞ and so
e(V ) = 0.

▶ In general one can show that e(U ⊕W ) = e(U)e(W ).

▶ So if V ≃ R⊕W then e(V ) = 0.

▶ A section of V is a continuous map s : X → EV with s(x) ∈ Vx for all x .

▶ If s is a section with s(x) ̸= 0 for all x then we can put Ux = R.s(x) and
Wx = U⊥

x to get e(V ) = 0.

▶ By contrapositive: if e(V ) ̸= 0 then every section of V must vanish
somewhere.

▶ Later we will see other characteristic classes giving invariants in H∗(X ) of
vector bundles over X ; these help to classify vector bundles up to
isomorphism.



The Gysin sequence

▶ Let V be an oriented n-dimensional vector bundle over X , with Euler class
e(V ) ∈ Hn(X ).

▶ The pair (BV , SV ) has a long exact sequence:

. . . −→ Hk(BV , SV )
α−→ Hk(BV )

β−→ Hk(SV )
δ−→ Hk+1(BV ,SV ) −→ . . . .

▶ Here Hk(BV ,SV ) = H̃k(BV /SV ) = H̃k(XV ) = Hk−n(X ).u(V ).

▶ The projection p : BV → X is a homotopy equivalence, with inverse given
by the zero section X → BV ; so Hk(BV ) = Hk(X ).

▶ This identifies α with the map i∗ so α(a) = a.e(V ).

▶ We now have an exact sequence as follows, called the Gysin sequence.

→ Hk−1(SV ) −→ Hk−n(X )
×e(V )−−−−→ Hk(X )

β−→ Hk(SV )
δ−→ Hk+1−n(X ) −→ . . . .

▶ Example: for the tautological bundle T over CPn we have ST =
{(v , L)|v ∈ L ≤ Cn+1, ∥v∥ = 1} = {(v ,Cv)|v ∈ Cn+1, ∥v∥ = 1} ≃ S2n+1.
Also e(T ) = x and H∗ST is mostly zero so ×x : Hk−2CPn → HkCPn is
usually iso. Now we can complete the proof that H∗(CPn) ≃ Z[x ]/xn+1.

Classifying vector bundles

▶ Vectk(X ) = {iso classes of k-dimensional vector bundles over X}
▶ Vect(X ) is a semiring with [U] + [V ] = [U ⊕ V ], [U][V ] = [U ⊗ V ]

This is commutative but there are no additive inverses.

▶ Theorem: there are spaces Gk with Vectk(X ) ≃ [X ,Gk ] for all compact X .

▶ Put P = R[t] and Pm = {f ∈ P | deg(f ) < m}. Put
Gkm = {V ≤ Pm | dim(V ) = k} and
Gk = {V ≤ P | dim(V ) = k} =

⋃
m Gkm.

▶ Define θkm :G̃km = {injective linear α : Rk → Pm}→Gkm by θ(α) = α(Rk).
Declare that U ⊆ Gk is open iff θ−1

km (U) is open for all k and m.

▶ Define a tautological bundle T over Gk by ET = {(v ,V ) | v ∈ V ∈ Gk}.
▶ For any f : X → Y and any W over Y , define f ∗(W )x = Wf (x) so

E(f ∗W ) = {(x ,w) ∈ X × EW | f (x) = π(w)}.
▶ We now have ϕ0 : Map(X ,Gk)→ Vectk(X ) by ϕ0(f ) = [f ∗(T )].

▶ Claim: every V over X is isomorphic to f ∗(T ) for some f , and
f ∗0 (T ) ≃ f ∗1 (T ) iff f0 and f1 are homotopic.

Partitions of unity

▶ Let X be a compact Hausdorff space with an open cover U = (Ui )i∈I .

▶ For ϕ : X → [0,∞) we put supp(ϕ) = ϕ−1((0,∞)).

▶ A partition of unity subordinate to U is a list ϕ1, . . . , ϕn : X → [0, 1] with∑
j ϕj = 1 such that for each j there exists i with supp(ϕj) ⊆ Ui .

▶ Lemma: there always exists a partition of unity.

▶ Proof: For each x choose i with x ∈ Ui .

▶ By standard general topology and Urysohn’s Lemma: we can choose
ψx : X → [0, 1] with ψx(x) = 1 and supp(ψx) ⊆ Ui .

▶ The open sets Vx = ψ−1
x ((0,∞)) cover the compact space X , so we can

choose x1, . . . , xn with
⋃n

j=1 Vxj = X .

▶ Now put ψ =
∑n

j=1 ψxi so ψ > 0 everywhere. Put ϕj = ψxj /ψ.

▶ Example: let V be a vector bundle over X , and let U be the family of
even open sets, i.e. those over which EV looks like Rd × U.
Then there are maps ϕ1, . . . , ϕn : X → [0, 1] and even open sets U1, . . . ,Un

with
∑

j ϕj = 1 and supp(ϕj) ⊆ Uj .

▶ By adjusting the argument slightly we can assume that there are even
open sets U ′

j with Uj ⊆ U ′
j .

Extension of sections

▶ Let Y be a closed subset of a compact Hausdorff space X .

▶ Tietze’s Theorem: any continuous map Y −→ R can be extended to a
continuous map X → R.

▶ Let V be a vector bundle over X . A section of V over Y is a continuous
map s : Y → EV with π(s(y)) = y (i.e. s(y) ∈ Vy ) for all y .

▶ Theorem: any section s over Y can be extended over X .

▶ Proof: first suppose that V is constant, so EV = Rd × X and sections
over Y are just maps Y → Rd . This case is immediate from Tietze’s
theorem.

▶ More generally, choose ϕj , Uj , U
′
j where supp(ϕj) ⊆ Uj ⊆ Uj ⊆ U ′

j and V

is constant over U ′
j . By the previous case we can choose sj over Uj

extending s|Y∩Uj
.

▶ Define tj to be ϕjsj on Uj , and 0 outside Uj . As supp(ϕj) ⊆ Uj this
definition is consistent and gives a continuous section.

▶ Define a section t =
∑

j tj over X ; as
∑

j ϕj = 1 this extends s.

▶ Application: A morphism α : V →W is the same as a section of the
bundle Hom(V ,W )x = Hom(Vx ,Wx). Thus, if we have a morphism
defined only over Y , we can extend it to get a morphism defined over X .



The isomorphism locus is open, and homotopy invariance

▶ Let α : V →W be a morphism of d-dimensional vector bundles over X ,
and put A = {x | αx : Vx →Wx is iso }.

▶ Claim: A is open.
▶ First suppose that V and W are constant, so EV = EW = Rd × X .

Then α is essentially a continuous map X → Hom(Rd ,Rd) = Md(R),
and A = {x | det(αx) ̸= 0}, which is open.

▶ In general, for any x ∈ X we can choose an open neighbourhood U on
which V and W are constant. The previous case then shows that A ∩ U is
open. As this works for all x we see that A is open.

▶ Corollary: if f0 ≃ f1 via h : [0, 1]× X → Y then f ∗0 (W ) ≃ f ∗1 (W ).
▶ For a ∈ [0, 1] define (Va)x = Wh(a,x); we must show that V0 ≃ V1.

Write a ∼ b if Va ≃ Vb. If the equivalence classes are open, connectedness
of [0, 1] implies that 0 ∼ 1.

▶ Define U,U ′ over [0, 1]× X by U(t,x) = Wh(t,x) and U ′
(t,x) = Wh(a,x).

▶ The identity gives an isomorphism α : U → U ′ over {a} × X .
By the section extension lemma, this can be extended to a
homomorphism α : U → U ′ over all of [0, 1]× X .

▶ The invertibility locus of α is open and contains {a} × X .
As X is compact it contains some (a− ϵ, a+ ϵ)× X ,
so the equivalence class of a contains (a− ϵ, a+ ϵ).

Global generation

▶ Let V be a d-dimensional vector bundle over X . Claim: for some N there
is a map α : RN × X → EV that is a linear surjection on each fibre.

▶ Proof: as before we can find open sets U1, . . . ,Un,U
′
1, . . . ,U

′
n with

X = U1 ∪ · · · ∪ Un and Ui ⊆ U ′
i and U ′

i is even.

▶ As U ′
i is even and contains Ui , we can choose an isomorphism

αi : Rd → V over Ui , and then extend it to get a homomorphism
αi : Rd → V over all of X .

▶ Now define α : Rdn → V by α(u1, . . . , un) =
∑

i αi (ui ).
Over Ui we know that αi is iso so α is surjective.
As X =

⋃
i Ui it follows that α is surjective everywhere.

▶ Corollary: there is a map f : X → Gd with V ≃ f ∗(T ).

▶ Proof: Choose α as before, so αx : PN = RN → Vx is a linear surjection.
It follows that dim(ker(αx)) = N − d and dim(ker(αx)

⊥) = d , so we can
define f : X → GdN ⊂ Gd by f (x) = ker(αx)

⊥.

▶ It is easy to see that αx restricts to give an isomorphism
(f ∗(T ))x = ker(αx)

⊥ → Vx , so f ∗(T ) ≃ V .

Isomorphism implies homotopy

▶ Suppose f0, f1 : X → Gd with f ∗0 (T ) ≃ f ∗1 (T ). Claim: f0 ≃ f1.

▶ Proof: As X is compact, so is f0(X ) ∪ f1(X ). It follows (by a lemma) that
f0(X ) ∪ f1(X ) ⊆ GdN for some N, i.e. fi (x) ≤ PN ⊂ P = R[t].

▶ By assumption we have isomorphisms
α(x) : (f ∗0 T )x = f0(x)→ (f ∗1 T )x = f1(x) for all x .

▶ For s ∈ [0, 1] and x ∈ X define β(s, x) : f0(x)→ P2N = PN ⊕ tNPN by
β(s, x)(v) = (1− s)v + stNα(x)(v).
This is injective so we can define h(s, x) = β(s, x)(f0(x)) ∈ Gk .

▶ This gives a homotopy from f0 to tN f1.

▶ We can also define γ(s, x) : tN f1(x)→ P2N by
γ(s, x)(tNv) = sv + (1− s)tNv , and then k(s, x) = γ(s, x)(tN f1(x)) ∈ Gk .
This gives a homotopy from tN f1 to f1.

▶ Homotopy invariance means we can define ϕ : [X ,Gk ]→ Vectk(X ) by
ϕ([f ]) = [f ∗(T )]. Global generation allowed us to prove that ϕ is
surjective. This slide shows that ϕ is injective. We therefore have a
natural bijection ϕ : [X ,Gk ]→ Vectk(X ).

▶ There is a similar result for complex vector bundles and the space of
k-dimensional complex subspaces of C[t].

Classifying line bundles

▶ From now on everything is over C by default.

▶ Pic(X ) = Vect1(X ) = [X ,G1] = [X ,CP∞]

▶ This is a group with [L][M] = [L⊗M] and 1 = [C] and
[L]−1 = [L∗] = [Hom(L,C)] (because L⊗ L∗ ≃ C).

▶ Recall G1 = CP∞ = {L < C[t] | dim(L) = 1}.
▶ Multiplication µ : C[t]× C[t]→ C[t] induces µ : CP∞ × CP∞ → CP∞

and then µ : [X ,CP∞]× [X ,CP∞]→ [X ,CP∞].
This is the same product operation as before.

▶ We have seen that H∗(CPn) = Z[x ]/xn+1 with x = e(T ).
It is also true that H∗(CP∞) = Z[x ] with x = e(T ).

▶ For a line bundle L over X we have e(L) ∈ H2(X ). If L ≃ f ∗(T ) for some
f : X → CP∞ then e(L) = e(f ∗(T )) = f ∗(e(T )) = f ∗(x).

▶ Note that µ∗(x) ∈ H2(CP∞ × CP∞) = Z{x ⊗ 1, 1⊗ x} and µ∗(x)
restricts to x on CP∞ × {1} or {1} × CP∞.

▶ From this: µ∗(x) = x ⊗ 1 + 1⊗ x , and then e(L⊗M) = e(L) + e(M).

▶ We now have a group homomorphism e : Pic(X )→ H2(X ).
It can be shown that this is an isomorphism.



Cohomology of projective bundles

▶ Let V be a complex vector bundle of dimension d over X .

▶ Define PV = {(a, L) | a ∈ X , L ≤ Va, dim(L) = 1} =
∐

a P(Va).

▶ This has a natural topology making it a fibre bundle over X ,
with fibres P(Va) homeomorphic to CPd−1.

▶ Define a tautological bundle T over PV by T(a,L) = L or
ET = {(a, L, v) | a ∈ X , L ≤ Va, dim(L) = 1, v ∈ Va}.

▶ This gives an element e(T ) ∈ H2(PV ) which we also call x .
Put B = (1, x , . . . , xd−1).

▶ For a ∈ X we have ia : P(Va)→ PV with i∗a (T ) = T and
i∗a (x) = x ∈ H2(P(Va)) so i∗a (B) is a basis for H∗(P(Va)).

▶ By the fibre bundle theorem: B is a basis for H∗(PV ) over H∗(X ).

▶ Although −xd maps to zero on each fibre, it does not follow that −xd = 0.

▶ Instead: we can express −xd in terms of B, so there are unique elements
ci (V ) ∈ H2i (X ) with xd + c1(V )xd−1 + · · ·+ cd−1(V )x + cd(V ) = 0.

▶ We put c0(V ) = 1 and fV (t) =
∑d

i=0 ci (V )td−i so fV (x) = 0 and
H∗(PV ) ≃ H∗(X )[t]/fV (t).

▶ The ci (V ) are Chern classes and fV (t) is the Chern polynomial.

Chern classes of sums

▶ Consider complex vector spaces V ,W .
Suppose that L ≤ V ⊕W is one-dimensional and L ̸≤W .
The projection π : V ⊕W → V gives an isomorphism L→ π(L).
Composing the inverse with π′ : V ⊕W →W gives α : π(L)→W .

▶ From this we get P(V ⊕W ) \ P(W ) ≃ E(Hom(T ,W )) and
P(V ⊕W )/P(W ) ≃ P(V )Hom(T ,W ).

▶ This also works for vector bundles and projective bundles.

▶ This gives an LES relating H∗(P(V ⊕W )) and H∗(P(W )) and

H̃∗(P(V )Hom(T ,W )) ≃ H∗−2 dim(W )(P(V )); similarly with V ,W exchanged.

▶ Here H∗(P(V ⊕W )) = H∗(X )[t]/fV⊕W (t); similarly for P(V ) and P(W ).

▶ From this we can prove fV⊕W (t) = fV (t)fW (t).

▶ Equivalently ck(V ⊕W ) =
∑

k=i+j ci (V )cj(W ).

▶ If dim(V ) = d then cd(V ) = (−1)de(V );
so for line bundles c1(L) = −e(L) = e(L∗) and fL(t) = t − e(L).

▶ So if V ≃ L1 ⊕ · · · ⊕ Ld then fV (t) =
∏

i (t − e(Li )).

▶ So if V is the constant bundle Cd then fV (t) = td , ck(V ) = 0 for k > 0.

Relations for flag manifolds

▶ Recall that Flag(Cn) is the space of flags
W = (W0 <W1 < · · · <Wn = Cn) with dim(Wi ) = i .

▶ We have a line bundle Li over Flag(Cn) with (Li )W = Wi/Wi−1. This gives
elements xi = e(Li ) ∈ H2(Flag(Cn)) for i = 1, . . . , n, with fLi (t) = t − xi .

▶ If we put V =
⊕

i Li we get fV (t) =
∏

i (t − xi ), so ck(V ) = ±σk , where
σk is the k’th elementary symmetric function of the variables xi .

▶ The inner product gives a splitting Cn = Wn ≃
⊕n

i=1(Wi/Wi−1) so
V =

⊕
i Li ≃ Cn as bundles so fV (t) = tn.

▶ It follows that σk = 0 for 1 ≤ k ≤ n.

▶ In fact H∗(Flag(Cn)) = Z[x1, . . . , xn]/(σ1, . . . , σn); to be proved later.

▶ Example: H∗ Flag(C3) = Z[x , y , z]/(x + y + z , xy + xz + yz , xyz).

▶ First relation gives z = −x − y ; substitute in other relations to get
x2 + xy + y 2 = 0, x2y + xy 2 = 0.

▶ Second relation now gives y 2 = −x2− xy ; substitute in third to get x3 = 0.

▶ Now H∗ = Z[x , y , z]/(x3 = 0, y 2 = −x2 − xz , z = −x − y0) =
Z{1, x , x3, y , xy , x2y}.

Milnor hypersurfaces revisited

▶ Recall that for m ≤ n we defined
Hm,n = {([z], [w ]) ∈ CPm × CPn |

∑m
i=0 ziwi = 0}.

▶ This has projections CPm p←− Hm,n
q−→ CPn and we put

y = p∗(x), z = q∗(x) ∈ H2(Hm,n).

▶ Define a bundle V over CPm by W[z] = {w ∈ Cn+1 |
∑m

i=0 ziwi = 0}.
Then Hm,n = PV and so
H∗(Hm,n) = H∗(CPn){z j | 0 ≤ j < n} = Z[y , z]/(ym+1, fV (z)).

▶ For L ∈ CPm we define αL : Cn+1 → L∗ by α(w)(v) =
∑m

i=0 wivi . This
gives a surjective map α : Cn → T ∗ of vector bundles with ker(α) = V .

▶ Using the inner product we get T ∗ ⊕ V ≃ Cn+1 so
(t + y)fV (t) = fT∗(t)fV (t) = fCn+1(t) = tn+1 in
H∗(CPm)[t] = Z[y , t]/ym+1.

▶ By long division we get fV (t) = tn − ytn−1 + y 2tn−2 − · · · ± ymtn−m.
Thus in H∗(Hm,n) we have

∑m
i=0(−1)

iy izn−i = fV (z) = 0.



Cohomology of Lens spaces

▶ Put ω = e2πi/n and Cn = ⟨ω⟩ < C× so C acts by multiplication on
S(Cd+1) = S2d+1. Put M = S2d+1/Cn (a Lens space).

▶ Let T = tautological bundle over CPd , so e(T ) = x and e(T⊗n) = nx .

▶ Define ϕ : S2d+1 → S(T⊗n) = {(L, v) | L ∈ CPd , v ∈ L⊗n, ∥v∥ = 1} by
ϕ(u) = (Cu, u⊗n).

▶ Then ϕ is surjective and ϕ(u) = ϕ(u′) iff u′ = ωku for some k.

▶ Thus ϕ induces a homeomorphism M = S2d+1/Cn → S(T n).

▶ This gives a Gysin sequence

Hk−2(CPd)
×nx−−→ Hk(CPd) −→ Hk(M)

δ−→ Hk−1(CPd)
×nx−−→ Hk+1(CPd).

▶ This gives a short exact sequence
Z[x ]/(xd+1, nx) = H∗(CPd)/nx → H∗(M)→ ann(nx ,H∗(CPd)) = Z.xd

▶ This gives H∗(M) = Z[x ]/(xd+1, nx)⊕ Zv with |v | = 2d + 1 = dim(M).

▶ Example: For d = 4 we have
H∗(M) = (Z, 0, (Z/n)x , 0, (Z/n)x2, 0, (Z/n)x3, 0, (Z/n)x4,Zv , 0, 0, . . . ).

Cohomology of flag bundles

▶ Let V be a d-dimensional complex vector bundle over X .

▶ Put Flagk(V ) = {(x ,W0 <W1 < · · · <Wk ≤ Vx) | dim(Wi ) = i}.
▶ Over Flagk(V ) we have line bundles L1, . . . , Lk with fibres

(Li )(x,W ) = Wi/Wi−1 and also a vector bundle Uk with
(Uk)(x,W ) = Vx/Wk .

▶ We put xi = e(Li ) ∈ H2(Flagk(V )).

▶ Note that L1 ⊕ · · · ⊕ Lk ⊕ Uk ≃ π∗(V ) so
fV (t) = fUk (t)

∏k
i=1(t − xi ) in H∗(Flagk(V ))[t].

▶ A point of P(Uk−1) consists of a point
(x ,W ) = (x ,W0 < · · · <Wk−1) ∈ Flagk−1(V ) together with a
one-dimensional subspace M ≤ (Uk−1)(x,W ) = Vx/Wk−1.
This must have the form M = Wk/Wk−1 for a unique Wk with
Wk−1 <Wk ≤ Vx and dim(Wk) = k. Thus Flagk(V ) = P(Uk−1).

▶ By the Projective Bundle Theorem:
H∗(Flagk(V )) = H∗(Flagk−1(V )){x i

k | 0 ≤ i ≤ d − k}.
▶ By induction: monomials x i1

1 · · · x
ik
k with 0 ≤ it ≤ d − t

give a basis for H∗(Flagk(V )) over H∗(X ).

▶ In particular: these monomials give a basis for H∗(Flagk(C
d)) over Z.

Ring structure of cohomology of flag bundles

▶ Flag1(V ) = PV , so H∗(Flag1(V )) = H∗(X )[x1]/fV (x1).

▶ As fV (x1) = 0, we have fV (t) = (t − x1)g1(t) for some monic
g1(t) ∈ H∗(Flag1(V ))[t] of degree d − 1.

▶ As U0 = V = L1 ⊕ U1 we have fV (t) = (t − x1)fU1(t) so g1(t) = fU1(t).

▶ As Flag2(V ) = P(U1) we have H∗(Flag2(V )) = H∗(Flag1(V ))[x2]/fU1(x2).

▶ This is also H∗(X )[x1, x2]/(g0(x1), g1(x2)),
where g0(t) = fV (t) and g1(t) = fV (t)/(t − x1).

▶ In general H∗(Flagk(V )) = H∗(X )[x1, . . . , xk ]/(gi−1(xi ) | 1 ≤ i ≤ k)
where g0(t) = fV (t) and gi (t) = gi−1(t)/(t − xi ).

▶ Or: put A = H∗(X )[x1, . . . , xk ] and h(t) =
∏
(t − xi ) ∈ A[t].

By long division: fV (t) = h(t)q(t) + r(t) with deg(r(t)) < k.

▶ Now r(t) = m0 +m1t + · · ·+mk−1t
k−1 with mi ∈ A,

and H∗(Flagk(V )) = A/(m0, . . . ,mk−1),
so fV (t) = h(t)q(t) in H∗(Flagk(V ))[t].


