
PROBLEMS ON ALGEBRAIC TOPOLOGY

1. Homeomorphisms

Problem 1.1. Let x be a point in Rn, and suppose ϵ > 0. Put U = {y ∈ Rn | ∥x− y∥ < ϵ}. In lectures we claimed
that there is a homeomorphism f : U → Rn given by

f(y) =
y − x

1− ∥y − x∥2/ϵ2
f−1(z) = x+

√
ϵ2 + 4∥z∥2 − ϵ

2∥z∥2
ϵz.

Check carefully that these formulae give well-defined and continuous maps with the appropriate domains and ranges,
and that they are inverse to each other.

Problem 1.2. Recall that u(n) = {β ∈ Mn(C) | β+ β† = 0}. Find a basis for u(2) over R, and prove that u(2) is not
a complex vector subspace of M2(C).

Problem 1.3. Recall our definition of the lens space: we have a complex vector space V of dimension n with inner
product, and an integer d > 1. We put Cd = {ω ∈ C | ωd = 1}, and we let this act on S(V ) by multiplication. The
lens space is then M = S(V )/Cd. What can you say in the special case where n = 1, or the special case where d = 2?

Problem 1.4. Let V be a finite-dimensional vector space with inner product. In Section 4 of the notes we defined
spaces S(V+), S

′(V+), S+(V+)/S(V ), SV , and B(V )/S(V ), and gave a table of formulae giving homeomorphisms
between all these spaces. Verify a few of these formulae.

Problem 1.5. By quoting a suitable general theorem, prove that ∆1 ×∆2 ×∆3 is homeomorphic to ∆6.

Problem 1.6. Consider the square X = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1} and the edge Y = {(x, 0) | 0 ≤ x ≤ 1}. Prove
that X/Y is homeomorphic to B2.

Problem 1.7. Let X be a space, and Y a closed subspace, and let Z be any other space. Construct a continuous
bijection f : (X/Y ) ∧ Z+ → (X × Z)/(Y × Z).

(In the cases of interest f−1 will be continuous so that f is a homeomorphism, but there are technical subtleties
around this point.)

Problem 1.8. If X and Y are finite based sets, with |X| = n and |Y | = m, what are |X ∨ Y | and |X ∧ Y |?

2. Mayer-Vietoris

Problem 2.1. Put A = {0, 1, . . . , n − 1} ⊆ R and U = R2 \ (A × {0}). Calculate H∗(U). (Hint: consider the sets
U± = R2 \ (A× [0,±∞)) and use the Mayer-Vietoris sequence.)

3. The Künneth Theorem

Problem 3.1. Consider the spaces X = C \ {0, 1} and Y = C \ {0, 1, 2}. The cohomology of these was described in
lectures. Describe Hn(X × Y ) for all n. Show that a2 = 0 for all a ∈ H1(X × Y ).
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4. Configuration spaces

Problem 4.1. Consider the space

X = F4C = {(z0, z1, z2, z3) ∈ C4 | zi ̸= zj wheneveri ̸= j}.
The cohomology of X was described in lectures in terms of generators and relations. Use this to give a basis for H∗(X).
(You can check your answer against the following facts: H∗(FnC) has total rank n!, whereas the group Hn−1(FnC)
has rank (n− 1)!, and the groups Hm(FnC) are zero for m ≥ n.)

Problem 4.2. Recall that BnC is the set of subsets S ⊂ C such that |S| = n (topologised as a quotient of FnC).
Prove that B2C is homotopy equivalent to S1.

Problem 4.3. Construct homeomorphisms

F2C ≃ C× C×

F3C ≃ C× C× × (C \ {0, 1})
B2C ≃ C× C×

Describe the cohomology of all these spaces.

Problem 4.4. Let F2Rn denote the space of pairs (a, b) with a, b ∈ Rn and a ̸= b. Let B2Rn be the quotient of
F2Rn by the evident action of C2, so (a, b) ∼ (c, d) iff ((a, b) = (c, d) or (a, b) = (d, c). Let RPn−1 denote the space of
one-dimensional subspaces L ≤ Rn. Show that B2Rn is homotopy equivalent to RPn−1.

5. Matrix groups

Problem 5.1. Give a path joining I to −I in U(2).

Problem 5.2. Put SU(n) = {A ∈ U(n) | det(A) = 1}. Define α : SU(3) → S5 × S5 by α(A) = (Ae0, Ae1) (where
{e0, e1, e2} is the standard basis of C3). Prove that α is injective but not surjective.

Problem 5.3. Prove that SU(2) is homeomorphic to S3, and thus that U(2) is homeomorphic to S1 × S3.

Problem 5.4. Prove that the space GL+
2 (R) = {A ∈ GL2(R) | det(A) > 0} is homeomorphic to R3 × S1.

Problem 5.5. Put J =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
, and let G be the group of matrices A ∈ GL4(R) such that ATJA = J . This is

called the Lorenz group. Prove that it has at least four path-components.

Problem 5.6. Recall the complex reflection map ρ : S1×CP 1 → U(2): the matrix ρ(z, L) has eigenvalue z on L, and
eigenvalue 1 on L⊥. Consider the following two matrices:

A =
1

2

[
i+ 1 −i− 1
i+ 1 i+ 1

]
B =

1√
2

[
1 −1
1 1

]
.

One of these has the form ρ(z, L) for some z and L, and the other does not lie in the image of ρ. Work out which is
which, and find z and L.

Problem 5.7. Give a formula for the rank of the free abelian group H∗U(n).

Problem 5.8. Give a basis for H̃∗(U(4)/U(2)). (This should be interpreted as the space obtained from U(4) by
collapsing U(2) to a point, not the coset space.)
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Problem 5.9. Find an integer n and a class u ∈ H∗U(n) such that u2 is a nonzero element of Hn2

U(n).

Problem 5.10. Let µ : U(3)×U(3) → U(3) be given by µ(A,B) = AB. By quoting facts about µ∗ proved in lectures,
calculate µ∗(a1a3a5) ∈ H9(U(3)× U(3)).

Problem 5.11. It is known that any manifold M can be embedded as a subspace of a finite dimensional vector space.
As an example, exhibit an embedding of PV in Hom(V, V ) (for any Hermitian space V ). (Look through the discussion
of the topology of U(V ) for hints.)

6. Vector bundles

Problem 6.1. If T is the tautological line bundle over CPn, prove that S(T ⊗ T ) = RP 2n+1.

Problem 6.2. Let q : V \ {0} → PV be the usual quotient map, and let T denote the tautological bundle over PV .
Prove that q∗T is isomorphic to a constant bundle.

Problem 6.3. Let L be the Möbius bundle over S1, given by Lz = {w ∈ C | w2 ∈ z.[0,∞)}. Prove that the bundle
C⊗R L ≃ L⊕ L is isomorphic to a constant bundle.

Problem 6.4. Let V and W be complex vector bundles over a base X, and suppose that dimC(W ) = 1. Prove that
P (V ⊗W ) ≃ PV .

Problem 6.5. Let V be a Hermitian space, and let L be the tautological bundle over PV . Interpret Hom(L,L⊥) as
a bundle over PV , and show that it is isomorphic to the tangent bundle.

Problem 6.6. Let V be a complex vector bundle over U(n) that can be written as a direct sum of line bundles. What
can you say about fV (t)?

7. Miscellaneous

Problem 7.1. Recall that the Mobius band can be described as

M = {(z, w) ∈ C× C | |z| = 1 and w2 = tz for some t ≥ 0}.
Prove that this is homotopy equivalent to S1.

Problem 7.2. Let G be a path-connected topological group, such that H∗(G) is a finitely generated free abelian
group. Prove that every element of H1(G) is primitive.

Problem 7.3. Let M be the Milnor hypersurface in CP 2×CP 3, and let y and z be the standard generators of H∗M .
Give a basis for H∗M , and express (y + z)4 in terms of that basis.

Problem 7.4. Recall that a Möbius transformation is a map f from the Riemann sphere C ∪ {∞} ≃ CP 1 to itself
that can be written in the form f(z) = (az + b)/(cz + d) for some a, b, c, d ∈ C with ad− bc ̸= 0. Let M be the group
of Möbius transformations.

Construct homeomorphisms

SL(2,C)/{±1} ≃ M ≃ F3(C ∪ {∞}).
By considering SU(2), construct an interesting map RP 3 −→ F3(S

2). By considering the Gram-Schmidt process, prove
that this map is a homotopy equivalence.
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Problem 7.5. Let H2,2 = {([z], [w] |
∑

i ziwi = 0} be the standard Milnor hypersurface in CP 2 × CP 2, and let
F3 = Flag3(C3) be the space of flags 0 = W0 < W1 < W2 < W3 = C3 in C3. By quoting results from the lectures,
write down the cohomology rings of these spaces, and prove by pure algebra that they are isomorphic. Find a
homeomorphism H2,2 −→ F3.

Problem 7.6. For 0 ≤ k ≤ n+1 we regard Ck as a subspace of Cn+1 in the usual way. Let Bn be the space of those
flags 0 = V0 < . . . < Vn+1 = Cn+1 in Cn+1 for which Vk ≤ Ck+1 for k = 0, . . . , n. Define line bundles L1, . . . , Ln+1

and M1, . . . ,Mn over Bn by

Lk,V = Vk ⊖ Vk−1

Mk,V = Ck+1 ⊖ Vk

(here W ⊖ U means the orthogonal complement of U in W ). Check that Lk ⊕ Mk = C ⊕ Mk−1 and deduce some
relations among Euler classes. Show how to regard Bn as a projective bundle over Bn−1 and deduce a description of
H∗Bn.

Problem 7.7. Let V be a complex vector space of dimension n and let S be a subset of {1, . . . , n − 1}, say S =
{d1, . . . , dm−1} with d0 := 0 < d1 < . . . < dm−1 < dm := n. Let FlagS(V ) be the space of sequences (Vd1

< . . . <
Vdm < V ) such that dim(Vdk

) = dk for all k. Guess a description of Hom(H∗ FlagS(V ), R) for any ring R, and outline
a proof that your guess is correct.

(Note that when S = {k} we have FlagS(V ) = Grassk(V ), and when S = {1, . . . , k} we have FlagS(V ) = Flagk(V ),
and both of these cases have been covered in lectures.)

Problem 7.8. Give a basis for H∗(Grass2(C4)).
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