PROBLEMS ON ALGEBRAIC TOPOLOGY

1. Homeomorphisms

Problem 1.1. Let x be a point in \mathbb{R}^{n}, and suppose $\epsilon>0$. Put $U=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<\epsilon\right\}$. In lectures we claimed that there is a homeomorphism $f: U \rightarrow \mathbb{R}^{n}$ given by

$$
f(y)=\frac{y-x}{1-\|y-x\|^{2} / \epsilon^{2}} \quad \quad f^{-1}(z)=x+\frac{\sqrt{\epsilon^{2}+4\|z\|^{2}}-\epsilon}{2\|z\|^{2}} \epsilon z .
$$

Check carefully that these formulae give well-defined and continuous maps with the appropriate domains and ranges, and that they are inverse to each other.

Problem 1.2. Recall that $\mathfrak{u}(n)=\left\{\beta \in M_{n}(\mathbb{C}) \mid \beta+\beta^{\dagger}=0\right\}$. Find a basis for $\mathfrak{u}(2)$ over \mathbb{R}, and prove that $\mathfrak{u}(2)$ is not a complex vector subspace of $M_{2}(\mathbb{C})$.

Problem 1.3. Recall our definition of the lens space: we have a complex vector space V of dimension n with inner product, and an integer $d>1$. We put $C_{d}=\left\{\omega \in \mathbb{C} \mid \omega^{d}=1\right\}$, and we let this act on $S(V)$ by multiplication. The lens space is then $M=S(V) / C_{d}$. What can you say in the special case where $n=1$, or the special case where $d=2$?

Problem 1.4. Let V be a finite-dimensional vector space with inner product. In Section 4 of the notes we defined spaces $S\left(V_{+}\right), S^{\prime}\left(V_{+}\right), S_{+}\left(V_{+}\right) / S(V), S^{V}$, and $B(V) / S(V)$, and gave a table of formulae giving homeomorphisms between all these spaces. Verify a few of these formulae.

Problem 1.5. By quoting a suitable general theorem, prove that $\Delta_{1} \times \Delta_{2} \times \Delta_{3}$ is homeomorphic to Δ_{6}.

Problem 1.6. Consider the square $X=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x, y \leq 1\right\}$ and the edge $Y=\{(x, 0) \mid 0 \leq x \leq 1\}$. Prove that X / Y is homeomorphic to B^{2}.

Problem 1.7. Let X be a space, and Y a closed subspace, and let Z be any other space. Construct a continuous bijection $f:(X / Y) \wedge Z_{+} \rightarrow(X \times Z) /(Y \times Z)$.
(In the cases of interest f^{-1} will be continuous so that f is a homeomorphism, but there are technical subtleties around this point.)

Problem 1.8. If X and Y are finite based sets, with $|X|=n$ and $|Y|=m$, what are $|X \vee Y|$ and $|X \wedge Y|$?

2. Mayer-Vietoris

Problem 2.1. Put $A=\{0,1, \ldots, n-1\} \subseteq \mathbb{R}$ and $U=\mathbb{R}^{2} \backslash(A \times\{0\})$. Calculate $H^{*}(U)$. (Hint: consider the sets $U_{ \pm}=\mathbb{R}^{2} \backslash(A \times[0, \pm \infty))$ and use the Mayer-Vietoris sequence.)

3. The Künneth Theorem

Problem 3.1. Consider the spaces $X=\mathbb{C} \backslash\{0,1\}$ and $Y=\mathbb{C} \backslash\{0,1,2\}$. The cohomology of these was described in lectures. Describe $H^{n}(X \times Y)$ for all n. Show that $a^{2}=0$ for all $a \in H^{1}(X \times Y)$.

4. Configuration spaces

Problem 4.1. Consider the space

$$
X=F_{4} \mathbb{C}=\left\{\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4} \mid z_{i} \neq z_{j} \text { whenever } i \neq j\right\}
$$

The cohomology of X was described in lectures in terms of generators and relations. Use this to give a basis for $H^{*}(X)$. (You can check your answer against the following facts: $H^{*}\left(F_{n} \mathbb{C}\right)$ has total rank n !, whereas the group $H^{n-1}\left(F_{n} \mathbb{C}\right)$ has rank $(n-1)$!, and the groups $H^{m}\left(F_{n} \mathbb{C}\right)$ are zero for $m \geq n$.)

Problem 4.2. Recall that $B_{n} \mathbb{C}$ is the set of subsets $S \subset \mathbb{C}$ such that $|S|=n$ (topologised as a quotient of $F_{n} \mathbb{C}$). Prove that $B_{2} \mathbb{C}$ is homotopy equivalent to S^{1}.

Problem 4.3. Construct homeomorphisms

$$
\begin{aligned}
& F_{2} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C}^{\times} \\
& F_{3} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C}^{\times} \times(\mathbb{C} \backslash\{0,1\}) \\
& B_{2} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C}^{\times}
\end{aligned}
$$

Describe the cohomology of all these spaces.

Problem 4.4. Let $F_{2} \mathbb{R}^{n}$ denote the space of pairs (a, b) with $a, b \in \mathbb{R}^{n}$ and $a \neq b$. Let $B_{2} \mathbb{R}^{n}$ be the quotient of $F_{2} \mathbb{R}^{n}$ by the evident action of C_{2}, so $(a, b) \sim(c, d)$ iff $\left((a, b)=(c, d)\right.$ or $(a, b)=(d, c)$. Let $\mathbb{R} P^{n-1}$ denote the space of one-dimensional subspaces $L \leq \mathbb{R}^{n}$. Show that $B_{2} \mathbb{R}^{n}$ is homotopy equivalent to $\mathbb{R} P^{n-1}$.

5. Matrix groups

Problem 5.1. Give a path joining I to $-I$ in $U(2)$.

Problem 5.2. Put $S U(n)=\{A \in U(n) \mid \operatorname{det}(A)=1\}$. Define $\alpha: S U(3) \rightarrow S^{5} \times S^{5}$ by $\alpha(A)=\left(A e_{0}, A e_{1}\right)$ (where $\left\{e_{0}, e_{1}, e_{2}\right\}$ is the standard basis of $\left.\mathbb{C}^{3}\right)$. Prove that α is injective but not surjective.

Problem 5.3. Prove that $S U(2)$ is homeomorphic to S^{3}, and thus that $U(2)$ is homeomorphic to $S^{1} \times S^{3}$.

Problem 5.4. Prove that the space $G L_{2}^{+}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}) \mid \operatorname{det}(A)>0\right\}$ is homeomorphic to $\mathbb{R}^{3} \times S^{1}$.

Problem 5.5. Put $J=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$, and let G be the group of matrices $A \in G L_{4}(\mathbb{R})$ such that $A^{T} J A=J$. This is called the Lorenz group. Prove that it has at least four path-components.

Problem 5.6. Recall the complex reflection map $\rho: S^{1} \times \mathbb{C} P^{1} \rightarrow U(2)$: the matrix $\rho(z, L)$ has eigenvalue z on L, and eigenvalue 1 on L^{\perp}. Consider the following two matrices:

$$
A=\frac{1}{2}\left[\begin{array}{cc}
i+1 & -i-1 \\
i+1 & i+1
\end{array}\right] \quad B=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

One of these has the form $\rho(z, L)$ for some z and L, and the other does not lie in the image of ρ. Work out which is which, and find z and L.

Problem 5.7. Give a formula for the rank of the free abelian group $H^{*} U(n)$.

Problem 5.8. Give a basis for $\widetilde{H}^{*}(U(4) / U(2))$. (This should be interpreted as the space obtained from $U(4)$ by collapsing $U(2)$ to a point, not the coset space.)

Problem 5.9. Find an integer n and a class $u \in H^{*} U(n)$ such that u^{2} is a nonzero element of $H^{n^{2}} U(n)$.

Problem 5.10. Let $\mu: U(3) \times U(3) \rightarrow U(3)$ be given by $\mu(A, B)=A B$. By quoting facts about μ^{*} proved in lectures, calculate $\mu^{*}\left(a_{1} a_{3} a_{5}\right) \in H^{9}(U(3) \times U(3))$.

Problem 5.11. It is known that any manifold M can be embedded as a subspace of a finite dimensional vector space. As an example, exhibit an embedding of $P V$ in $\operatorname{Hom}(V, V)$ (for any Hermitian space V). (Look through the discussion of the topology of $U(V)$ for hints.)

6. Vector Bundles

Problem 6.1. If T is the tautological line bundle over $\mathbb{C} P^{n}$, prove that $S(T \otimes T)=\mathbb{R} P^{2 n+1}$.

Problem 6.2. Let $q: V \backslash\{0\} \rightarrow P V$ be the usual quotient map, and let T denote the tautological bundle over $P V$. Prove that $q^{*} T$ is isomorphic to a constant bundle.

Problem 6.3. Let L be the Möbius bundle over S^{1}, given by $L_{z}=\left\{w \in \mathbb{C} \mid w^{2} \in z \cdot[0, \infty)\right\}$. Prove that the bundle $\mathbb{C} \otimes_{\mathbb{R}} L \simeq L \oplus L$ is isomorphic to a constant bundle.

Problem 6.4. Let V and W be complex vector bundles over a base X, and suppose that $\operatorname{dim}_{\mathbb{C}}(W)=1$. Prove that $P(V \otimes W) \simeq P V$.

Problem 6.5. Let V be a Hermitian space, and let L be the tautological bundle over $P V$. Interpret $\operatorname{Hom}\left(L, L^{\perp}\right)$ as a bundle over $P V$, and show that it is isomorphic to the tangent bundle.

Problem 6.6. Let V be a complex vector bundle over $U(n)$ that can be written as a direct sum of line bundles. What can you say about $f_{V}(t)$?

7. Miscellaneous

Problem 7.1. Recall that the Mobius band can be described as

$$
M=\left\{(z, w) \in \mathbb{C} \times \mathbb{C}| | z \mid=1 \text { and } w^{2}=t z \text { for some } t \geq 0\right\}
$$

Prove that this is homotopy equivalent to S^{1}.

Problem 7.2. Let G be a path-connected topological group, such that $H^{*}(G)$ is a finitely generated free abelian group. Prove that every element of $H^{1}(G)$ is primitive.

Problem 7.3. Let M be the Milnor hypersurface in $\mathbb{C} P^{2} \times \mathbb{C} P^{3}$, and let y and z be the standard generators of $H^{*} M$. Give a basis for $H^{*} M$, and express $(y+z)^{4}$ in terms of that basis.

Problem 7.4. Recall that a Möbius transformation is a map f from the Riemann sphere $\mathbb{C} \cup\{\infty\} \simeq \mathbb{C} P^{1}$ to itself that can be written in the form $f(z)=(a z+b) /(c z+d)$ for some $a, b, c, d \in \mathbb{C}$ with $a d-b c \neq 0$. Let M be the group of Möbius transformations.

Construct homeomorphisms

$$
S L(2, \mathbb{C}) /\{ \pm 1\} \simeq M \simeq F_{3}(\mathbb{C} \cup\{\infty\})
$$

By considering $S U(2)$, construct an interesting map $\mathbb{R} P^{3} \rightarrow F_{3}\left(S^{2}\right)$. By considering the Gram-Schmidt process, prove that this map is a homotopy equivalence.

Problem 7.5. Let $H_{2,2}=\left\{\left([\underline{z}],[\underline{w}] \mid \sum_{i} z_{i} w_{i}=0\right\}\right.$ be the standard Milnor hypersurface in $\mathbb{C} P^{2} \times \mathbb{C} P^{2}$, and let $F_{3}=\operatorname{Flag}_{3}\left(\mathbb{C}^{3}\right)$ be the space of flags $0=W_{0}<W_{1}<W_{2}<W_{3}=\mathbb{C}^{3}$ in \mathbb{C}^{3}. By quoting results from the lectures, write down the cohomology rings of these spaces, and prove by pure algebra that they are isomorphic. Find a homeomorphism $H_{2,2} \rightarrow F_{3}$.

Problem 7.6. For $0 \leq k \leq n+1$ we regard \mathbb{C}^{k} as a subspace of \mathbb{C}^{n+1} in the usual way. Let B_{n} be the space of those flags $0=V_{0}<\ldots<V_{n+1}=\mathbb{C}^{n+1}$ in \mathbb{C}^{n+1} for which $V_{k} \leq \mathbb{C}^{k+1}$ for $k=0, \ldots, n$. Define line bundles L_{1}, \ldots, L_{n+1} and M_{1}, \ldots, M_{n} over B_{n} by

$$
\begin{aligned}
L_{k, \underline{V}} & =V_{k} \ominus V_{k-1} \\
M_{k, \underline{V}} & =\mathbb{C}^{k+1} \ominus V_{k}
\end{aligned}
$$

(here $W \ominus U$ means the orthogonal complement of U in W). Check that $L_{k} \oplus M_{k}=\mathbb{C} \oplus M_{k-1}$ and deduce some relations among Euler classes. Show how to regard B_{n} as a projective bundle over B_{n-1} and deduce a description of $H^{*} B_{n}$.

Problem 7.7. Let V be a complex vector space of dimension n and let S be a subset of $\{1, \ldots, n-1\}$, say $S=$ $\left\{d_{1}, \ldots, d_{m-1}\right\}$ with $d_{0}:=0<d_{1}<\ldots<d_{m-1}<d_{m}:=n$. Let $\operatorname{Flag}_{S}(V)$ be the space of sequences $\left(V_{d_{1}}<\ldots<\right.$ $\left.V_{d_{m}}<V\right)$ such that $\operatorname{dim}\left(V_{d_{k}}\right)=d_{k}$ for all k. Guess a description of $\operatorname{Hom}\left(H^{*} \operatorname{Flag}_{S}(V), R\right)$ for any ring R, and outline a proof that your guess is correct.
(Note that when $S=\{k\}$ we have $\operatorname{Flag}_{S}(V)=\operatorname{Grass}_{k}(V)$, and when $S=\{1, \ldots, k\}$ we have $\operatorname{Flag}_{S}(V)=\operatorname{Flag}_{k}(V)$, and both of these cases have been covered in lectures.)

Problem 7.8. Give a basis for $H^{*}\left(\operatorname{Grass}_{2}\left(\mathbb{C}^{4}\right)\right)$.

