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SCHOOL OF MATHEMATICS AND STATISTICS Spring Semester
2014–2015

Algebraic Topology - solutions 2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.

MAS435 1 Turn Over
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1 (Standard)

(i) (a) Yes, f is homotopic to g. A homotopy α from g to f is given by

α : I × I −→ S1

α(x, t) = (cos(6πxt), sin(6πxt))

Note that α(x, 0) = g(x) and α(x, 1) = f(x) and α is continuous.
(2 marks)

(b) No, f is not loop homotopic to g. We know from the lecture that f

represents 3 in π1(S
1) = Z and g represents 0 in π1(S

1). If f was
loop homotopic to g then they would represent the same element in
π1(S

1). Since 0 6= 3 in Z f is not loop homotopic to g. (2 marks)

(ii) We know from the lecture that ifX is homotopy equivalent to Y then π1(X)

is isomorphic to π1(Y ). Since (again from the lecture) π1(RP 2) = Z/2Z
and π1(S

2) = 0 they are not homotopy equivalent. (3 marks)

(iii) (a) The unit disc D2 in R2 is contractible. We use notation i for the

inclusion of a point into D2, i.e. i : ∗ −→ D2 where i(∗) = (0, 0) and

notation f for the map sending wholeD2 to the point, i.e. f : D2 −→
∗, where for all (x, y) ∈ D2, f((x, y)) = ∗. We have f ◦ i = Id∗. We
need to show that there exists a homotopy α from i ◦ f to IdD2 .
De�ne α as follows

α : D2 × I −→ D2

α((x, y), t) = (xt, yt)

Note that α((x, y), 0) = 0 = i ◦ f((x, y)) and α((x, y), 1) = (x, y) =
IdD2((x, y)) and since α is continuous that �nishes the proof.

(3 marks)

(b) The complement of the disc in a plane R2 \ D2 is not contractible.
We know from the lecture that if X is contractible then π1(X) is

trivial. We will show that R2 \D2 is homotopy equivalent to S1. It

will follow, that π1(R2 \D2) = Z 6= 0.

Firstly, we give two maps f : R2 \D2 −→ S1 and g : S1 −→
R2 \ D2 as follows: f((r, θ)) = (1, θ) and g((1, θ)) = (2, θ) (using

polar coordinates). Notice that since f is de�ned on R2 \ D2 it is
continuous. g is obviously continuous. Since the composite f ◦ g =
IdS1 we just need to de�ne a homotopy α from g ◦ f to IdR2\D2 . We
do it as follows

α : R2 \D2 × I −→ R2 \D2

α((r, θ), t) = (2(1− t) + rt, θ)

Note that α((r, θ), 1) = IdR2\D2((r, θ)) and α((r, θ), 0) = g ◦ f((rθ))
and since α is continuous that �nishes the proof. (3 marks)
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1 (continued)

(iv) We know from the lecture that π1 commutes with products and we know

that π1(RP 2) = Z/2Z and π1(T ) = π1(S
1×S1) = π1(S

1)×π1(S1) = Z×Z.
Therefore we have: π1(RP 2 × T ) = π1(RP 2) × π1(S1) × π1(S1) = Z/2Z ×
Z× Z. (3 marks)

(v) π1 of a space depends on a basepoint. If a space X is a disjoint union of two

path-connected components, for example X = ∗ t S1 then π1(X, ∗) = 0,

but π1(X, x) = Z for any x ∈ S1. However, we know from the lecture
that π1(Y ) does not depend on the choice of the basepoint if Y is path
connected. (4 marks)
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2 (i) (a) (Standard) Since D2 is contractible π1(S
1 ∨D2) = π1(S

1) = Z.
(1 mark)

(b) (We've done several examples of application of Van Kampen's theo-

rem in the lectures.) To calculate π1(S
1 ∨RP 2) by using Van Kam-

pen's theorem we present our space as the following pushout:

D1 ∨D2

D1 ∨ RP 2

S1 ∨D2

S1 ∨ RP 2

f
;;wwwwwwwwww

g
##G

GG
GG

GG
GG

G

##G
GG

GG
GG

GG
G

;;wwwwwwwwww

(2 marks)

Here all discs are open discs, so that intersection of both spaces:
(D1 ∨ RP 2) ∩ (S1 ∨D2) = D1 ∨D2 is an open neighbourhood of a

joining point in S1∨RP 2. Note that all conditions of Van Kampen's
theorem are satis�ed, thus we can apply π1 to this diagram

π1(D
1 ∨D2)

π1(D
1 ∨ RP 2)

π1(S
1 ∨D2)

π1(S
1 ∨ RP 2)

π1f
;;wwwwwwwww

π1g ##G
GG

GG
GG

GG

##G
GG

GG
GG

GG

;;wwwwwwwww

Since D1 and D2 are contractible we have π1(D
1 ∨ D2) = 0,

π1(D
1 ∨ RP 2) = π1(RP 2) = Z/2Z and π1(S

1 ∨ D2) = π1(S
1) = Z.

Notice that both maps on π1 are trivial. Using Van Kampen's theo-
rem we can conclude that π1(S

1 ∨RP 2) ∼= Z ∗ (Z/2Z). (2 marks)
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2 (continued)

(c) (Standard knowledge from the lecture) The universal cover for S1

is a real line R with the map p : R −→ S1 de�ned by p(x) =
(cos(2πx), sin(2πx)). We know that from the lecture. (1 mark)

The universal cover for D2 is D2 with the identity map. (we
know that from the lecture) (1 mark)

The universal cover for S1 ∨D2 is a real line with a copy of
D2 attached to every integer point. The covering map is de�ned as
above on the real line and on every disc it is the identity map - we
know it from the lecture.

(1 mark)

(d) (Similar to the example from the lecture, part of question from home-

work Week 11) Since S1 ∨ D2 is path connected, locally path con-
nected and semi locally simply connected we can use the classi�ca-
tion theorem from the lecture. Connected covers of S1 ∨D2 (up to

isomorphism) correspond to subgroups of π(S1 ∨ D2) ∼= Z by the
classi�cation theorem. We know that all subgroups of Z are of the
form nZ, for all n > 0. Trivial subgroup always corresponds to the
universal cover, which is described above. When n = 1 the subgroup
is actually the whole group, so it corresponds to the identity cover
by S1 ∨ D2. For n > 1 we have a copy of S1 = R/nZ with a copy

of D2 attached to every integer point. (So we have n copies of D2).

The covering map is n-fold cover of S1 by S1 and on every copy of
D2 it is an identity map, see picture:
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2 (continued)

Since we mentioned all subgroups of Z, the classi�cation the-
orem proves that this is the full list of connected covering spaces (up
to isomorphism).
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2 (continued)

(ii) (As a question from homework Week 11, general statement with proof was

given at the lecture) Construct a space with π1 = 〈a, b, c|a2bc, acb〉 and
prove that your space's π1 is as required.
We construct a space X as follows: �rst we take the wedge sum of 3 copies
of S1 (we name the generator of π1 of each by a, b and c respectively):∨

S1. Then we attach to it two discs D2 via the maps on the boundary

corresponding to the relations above, i.e. �rst disc will be attached via map

f : S1 −→
∨

S1 shown on the picture:

and the second disc will be attached via the map on the boundary

of D2 g : S1 −→
∨

S1 shown on the picture:

(3 marks)

We call this space X. Now we need to prove that π1(X) is as required. We
will use the Van Kampen's theorem to do that. We can present X as a
following pushout, where all discs are open and all copies of S1 are made
open by taking a homotopy equivalent spaces (−ε, ε)× S1:
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2 (continued)

S1 ∨ S1

∨
S1

D2 ∨D2

X

f∨g
;;wwwwwwwww

∂∨∂ ##G
GG

GG
GG

GG
G

##G
GG

GG
GG

GG
G

;;wwwwwwwwww

where ∂ denotes the inclusion of the collar into D2.
The above changes make it possible to use Van Kampen's theorem, but
they won't change the corresponding homotopy groups, so we stick to the
notation S1:

π1(S
1 ∨ S1)

π1(
∨
S1)

π1(D
2 ∨D2)

π1(X)

π1(f∨g)
;;wwwwwwwww

π1(∂∨∂) ##G
GG

GG
GG

GG

##G
GG

GG
GG

GG

;;wwwwwwwww

We get the following diagram of groups and homomorphisms:

Z ∗ Z

Z ∗ Z ∗ Z = 〈a, b, c〉

0

π1(X)

a2bc∨acb
;;wwwwwwwww

0
##G

GG
GG

GG
GG

GG

##G
GG

GG
GG

GG

;;wwwwwwwwww

Using Van Kampen's theorem we get π1(X) = 〈a, b, c | a2bc, acb〉 as required.
(3 marks)
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3 (i) (bookwork)

(a) A singular n-simplex in X is a continuous map ∆n → X where
∆n is the standard n-simplex. In the singular chain complex of X,
Cn(X) is the free abelian group generated by all the singular n-
simplices in X. The boundary map δn : Cn(X) → Cn−1(X) is the
group homomorphism determined on generators as follows: for an n-

simplex f : ∆n → X, δn(f) =
n∑
i=0

(−1)ifi, where fi is the restriction

of f to the i-th face of ∆n, fi : ∆n−1 ∼= ∆n−1
i → X.

(3 marks)

(b) Cn(f) : Cn(X)→ Cn(Y ) is the group homomorphism determined on
generators by post-composition with f . That is, for σ : ∆n → X in
Cn(X), we de�ne Cn(f)(σ) = fσ : ∆n → Y and we extend linearly.

(2 marks)

(c) Since all the maps are group homomorphisms, it's enough to check
the required relation on generators. Let σ ∈ Cn(X) be an n-simplex.
Then

Cn−1(f)(δn(σ)) = Cn−1(f)

(∑
i

(−1)iσ|[v0, . . . , v̂i, . . . , vn]

)
=
∑
i

(−1)ifσ|[v0, . . . , v̂i, . . . , vn]

=
∑
i

(−1)iCn(f)(σ)|[v0, . . . , v̂i, . . . , vn] = δnCn(f)(σ).

(3 marks)
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3 (continued)

(ii) (unseen, similar to homework problems)

Clearly, H≥4 = 0 and H3 = ker δ3 = 0. (1 mark)

ker δ2 = {pb+ qc+ rd | p(15e− 6f) + q(30e− 12f) + r(15e− 6f) = 0, p, q, r ∈ Z}
= {pb+ qc+ rd | 15p+ 30q + 15r = 0,−6p− 12q − 6r = 0, p, q, r ∈ Z}
= {pb+ qc+ rd | p+ 2q + r = 0, p, q, r ∈ Z}
= {pb+ qc+ rd | r = −p− 2q, p, q ∈ Z}
= {pb+ qc+ (−p− 2q)d | p, q ∈ Z}
= {p(b− d) + q(c− 2d) | p, q ∈ Z}
= Z{b− d} ⊕ Z{c− 2d}

and
Imδ3 = Z{7(b− d)}.

So

H2 =
ker δ2
Imδ3

=
Z{b− d} ⊕ Z{c− 2d}

Z{7(b− d)}
∼= Z/7⊕ Z.

(3 marks)

ker δ1 = {pe+ qf | 2pg + 5qg = 0, p, q ∈ Z} = {pe+ qf | 2p = −5q, p, q ∈ Z}
= {5re− 2rf | r ∈ Z} = Z{5e− 2f}.

and
Imδ2 = Z{15e− 6f}.

So H1 = Z/3. (2 marks)

Imδ1 = Z{g}, since g = δ1(f − 2e), so H0 = 0. (1 mark)

(iii) (unseen, similar to homework problems)

(a) The chain complex is

0 Z{α} Z{a} ⊕ Z{b} Z{x} ⊕ Z{y} 0
0 δ2 δ1 0

where δ2 is determined by δ2(α) = a and δ1 is determined by δ1(a) =
0 and δ1(b) = x− y. (2 marks)

Its homology groups are H≥3 = 0, H2 = ker δ2 = 0, H1 =
ker δ1
Imδ2

=

Z{a}
Z{a}

= 0 and H0 =
Z{x} ⊕ Z{y}
Z{x− y}

∼= Z.

(2 marks)

(b) The space is a cone on a circle and hence contractible, so the homol-
ogy groups are those of any contractible space. (1 mark)
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4 (i) (unseen, similar to homework problems)

(a) C∗(X) is

0 Z{α} ⊕ Z{β} Z{a} ⊕ Z{b} ⊕ Z{c} Z{x} ⊕ Z{y} ⊕ Z{z} 0
0 δ2 δ1 0

where δ2 is determined by δ2(α) = c and δ2(β) = −c and δ1 is
determined by δ1(a) = y − x, δ1(b) = z − x and δ1(c) = 0.

(2 marks)

C∗(A) is

0 Z{c} Z{x} 0
0 δ1 = 0 0

(1 mark)

C∗(X,A) is

0 Z{α} ⊕ Z{β} Z{a} ⊕ Z{b} Z{y} ⊕ Z{z} 0
0 δ2 δ1 0

with maps induced from those in C∗(X), so δ2 = 0, δ1(a) = y,
δ1(b) = z. (1 mark)

(b) H≥3(X,A) = 0, H2(X,A) = ker δ2 = Z{α} ⊕ Z{β}. (1 mark)

H1(X,A) =
ker δ1
Imδ2

= 0. (1 mark)

H0(X,A) =
Z{y} ⊕ Z{z}

Imδ1
=

Z{y} ⊕ Z{z}
Z{y} ⊕ Z{z}

= 0. (1 mark)

(c) The space X consists of two cones on a circle glued along the circle.
The subspace A is this circle. The quotient space has the homotopy
type of a wedge of two 2-spheres. The reduced homology groups of
this space are the ones calculated in part (b), since we know the
reduced homology of a 2-sphere is a single copy of Z in degree 2 and
that reduced homology takes wedges to direct sums. (3 marks)
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4 (continued)

(ii) (unseen)

(a) If A ∩ B 6= ∅, we have the reduced homology version of the Mayer-
Vietoris long exact sequence:

· · · H̃n(A ∩B) H̃n(A)⊕ H̃n(B) H̃n(X)

H̃n−1(A ∩B) H̃n−1(A)⊕ H̃n−1(B) · · ·

· · · H̃0(A)⊕ H̃0(B) H̃0(X) 0

(2 marks)

By assumption, H̃n(X) appears between zero groups in an exact
sequence, for all n ≥ 0, so

H̃n(X) = ker(outgoing map) = Im(incoming map) = 0.

(2 marks)

(b) Write Y = X ∪ C, where X = A ∪ B. By part (a), H̃n(X) = 0 for
all n ≥ 0. (1 mark)

Now consider X ∩ C = P ∪Q where P = A ∩ C and Q = B ∩ C.
(1 mark)

We can apply the unreduced M-V sequence to P ∪Q, using P ∩Q =
A ∩ B ∩ C and this time, by the argument seen in part (a), we will

get for n ≥ 1, H̃n(P ∪Q) = Hn(P ∪Q) = 0. (1 mark)

Now we apply M-V one more time for Y = X ∪ C. We will have

H̃n(Y ) = Hn(Y ) appearing between zero groups, this time for n ≥ 2,

so H̃n(Y ) = 0 for n ≥ 2 as required. (1 mark)

Finally, for the example, we can take Y = S1, covered by three nicely
overlapping open arcs A,B,C such that A,B,C and all the pairwise
intersections are contractible, but the triple intersection is empty.

Here H̃1(S
1) = Z. (2 marks)

End of Question Paper
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