SCHOOL OF MATHEMATICS AND STATISTICS

Algebraic Topology - solutions

Spring Semester 2014-2015

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.
(i) (a) Yes, f is homotopic to g. A homotopy α from g to f is given by

$$
\begin{gathered}
\alpha: I \times I \longrightarrow S^{1} \\
\alpha(x, t)=(\cos (6 \pi x t), \sin (6 \pi x t))
\end{gathered}
$$

Note that $\alpha(x, 0)=g(x)$ and $\alpha(x, 1)=f(x)$ and α is continuous.
(2 marks)
(b) No, f is not loop homotopic to g. We know from the lecture that f represents 3 in $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ and g represents 0 in $\pi_{1}\left(S^{1}\right)$. If f was loop homotopic to g then they would represent the same element in $\pi_{1}\left(S^{1}\right)$. Since $0 \neq 3$ in $\mathbb{Z} f$ is not loop homotopic to g. (2 marks)
(ii) We know from the lecture that if X is homotopy equivalent to Y then $\pi_{1}(X)$ is isomorphic to $\pi_{1}(Y)$. Since (again from the lecture) $\pi_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}$ and $\pi_{1}\left(S^{2}\right)=0$ they are not homotopy equivalent.
(3 marks)
(iii) (a) The unit disc D^{2} in \mathbb{R}^{2} is contractible. We use notation i for the inclusion of a point into D^{2}, i.e. $i: * \longrightarrow D^{2}$ where $i(*)=(0,0)$ and notation f for the map sending whole D^{2} to the point, i.e. $f: D^{2} \longrightarrow$ *, where for all $(x, y) \in D^{2}, f((x, y))=*$. We have $f \circ i=I d_{*}$. We need to show that there exists a homotopy α from $i \circ f$ to $I d_{D^{2}}$. Define α as follows

$$
\begin{gathered}
\alpha: D^{2} \times I \longrightarrow D^{2} \\
\alpha((x, y), t)=(x t, y t)
\end{gathered}
$$

Note that $\alpha((x, y), 0)=0=i \circ f((x, y))$ and $\alpha((x, y), 1)=(x, y)=$

(3 marks)
(b) The complement of the disc in a plane $\mathbb{R}^{2} \backslash D^{2}$ is not contractible. We know from the lecture that if X is contractible then $\pi_{1}(X)$ is trivial. We will show that $\mathbb{R}^{2} \backslash D^{2}$ is homotopy equivalent to S^{1}. It will follow, that $\pi_{1}\left(\mathbb{R}^{2} \backslash D^{2}\right)=\mathbb{Z} \neq 0$.

Firstly, we give two maps $f: \mathbb{R}^{2} \backslash D^{2} \longrightarrow S^{1}$ and $g: S^{1} \longrightarrow$ $\mathbb{R}^{2} \backslash D^{2}$ as follows: $f((r, \theta))=(1, \theta)$ and $g((1, \theta))=(2, \theta)$ (using polar coordinates). Notice that since f is defined on $\mathbb{R}^{2} \backslash D^{2}$ it is continuous. g is obviously continuous. Since the composite $f \circ g=$ $I d_{S^{1}}$ we just need to define a homotopy α from $g \circ f$ to $I d_{\mathbb{R}^{2} \backslash D^{2}}$. We do it as follows

$$
\begin{aligned}
& \alpha: \mathbb{R}^{2} \backslash D^{2} \times I \longrightarrow \mathbb{R}^{2} \backslash D^{2} \\
& \alpha((r, \theta), t)=(2(1-t)+r t, \theta)
\end{aligned}
$$

Note that $\alpha((r, \theta), 1)=I d_{\mathbb{R}^{2} \backslash D^{2}}((r, \theta))$ and $\alpha((r, \theta), 0)=g \circ f((r \theta))$ and since α is continuous that finishes the proof.
(3 marks)
(continued)
(iv) We know from the lecture that π_{1} commutes with products and we know that $\pi_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}$ and $\pi_{1}(T)=\pi_{1}\left(S^{1} \times S^{1}\right)=\pi_{1}\left(S^{1}\right) \times \pi_{1}\left(S^{1}\right)=\mathbb{Z} \times \mathbb{Z}$. Therefore we have: $\pi_{1}\left(\mathbb{R} P^{2} \times T\right)=\pi_{1}\left(\mathbb{R} P^{2}\right) \times \pi_{1}\left(S^{1}\right) \times \pi_{1}\left(S^{1}\right)=\mathbb{Z} / 2 \mathbb{Z} \times$ $\mathbb{Z} \times \mathbb{Z}$.
(3 marks)
(v) $\quad \pi_{1}$ of a space depends on a basepoint. If a space X is a disjoint union of two path-connected components, for example $X=* \sqcup S^{1}$ then $\pi_{1}(X, *)=0$, but $\pi_{1}(X, x)=\mathbb{Z}$ for any $x \in S^{1}$. However, we know from the lecture that $\pi_{1}(Y)$ does not depend on the choice of the basepoint if Y is path connected.
(4 marks)

2 (i) (a) (Standard) Since D^{2} is contractible $\pi_{1}\left(S^{1} \vee D^{2}\right)=\pi_{1}\left(S^{1}\right)=\mathbb{Z}$.
(b) (We've done several examples of application of Van Kampen's theorem in the lectures.) To calculate $\pi_{1}\left(S^{1} \vee \mathbb{R} P^{2}\right)$ by using Van Kampen's theorem we present our space as the following pushout:

(2 marks)
Here all discs are open discs, so that intersection of both spaces: $\left(D^{1} \vee \mathbb{R} P^{2}\right) \cap\left(S^{1} \vee D^{2}\right)=D^{1} \vee D^{2}$ is an open neighbourhood of a joining point in $S^{1} \vee \mathbb{R} P^{2}$. Note that all conditions of Van Kampen's theorem are satisfied, thus we can apply π_{1} to this diagram

Since D^{1} and D^{2} are contractible we have $\pi_{1}\left(D^{1} \vee D^{2}\right)=0$, $\pi_{1}\left(D^{1} \vee \mathbb{R} P^{2}\right)=\pi_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}$ and $\pi_{1}\left(S^{1} \vee D^{2}\right)=\pi_{1}\left(S^{1}\right)=\mathbb{Z}$. Notice that both maps on π_{1} are trivial. Using Van Kampen's theorem we can conclude that $\pi_{1}\left(S^{1} \vee \mathbb{R} P^{2}\right) \cong \mathbb{Z} *(\mathbb{Z} / 2 \mathbb{Z})$. (2 marks)
(c) (Standard knowledge from the lecture) The universal cover for S^{1} is a real line \mathbb{R} with the map $p: \mathbb{R} \longrightarrow S^{1}$ defined by $p(x)=$ $(\cos (2 \pi x), \sin (2 \pi x))$. We know that from the lecture. (1 mark)

The universal cover for D^{2} is D^{2} with the identity map. (we know that from the lecture)
(1 mark)
The universal cover for $S^{1} \vee D^{2}$ is a real line with a copy of D^{2} attached to every integer point. The covering map is defined as above on the real line and on every disc it is the identity map - we know it from the lecture.

(d) (Similar to the example from the lecture, part of question from homework Week 11) Since $S^{1} \vee D^{2}$ is path connected, locally path connected and semi locally simply connected we can use the classification theorem from the lecture. Connected covers of $S^{1} \vee D^{2}$ (up to isomorphism) correspond to subgroups of $\pi\left(S^{1} \vee D^{2}\right) \cong \mathbb{Z}$ by the classification theorem. We know that all subgroups of \mathbb{Z} are of the form $n \mathbb{Z}$, for all $n \geqslant 0$. Trivial subgroup always corresponds to the universal cover, which is described above. When $n=1$ the subgroup is actually the whole group, so it corresponds to the identity cover by $S^{1} \vee D^{2}$. For $n>1$ we have a copy of $S^{1}=\mathbb{R} / n \mathbb{Z}$ with a copy of D^{2} attached to every integer point. (So we have n copies of D^{2}). The covering map is n-fold cover of S^{1} by S^{1} and on every copy of D^{2} it is an identity map, see picture:

Since we mentioned all subgroups of \mathbb{Z}, the classification theorem proves that this is the full list of connected covering spaces (up to isomorphism).
(ii) (As a question from homework Week 11, general statement with proof was given at the lecture) Construct a space with $\pi_{1}=\left\langle a, b, c \mid a^{2} b c, a c b\right\rangle$ and prove that your space's π_{1} is as required.
We construct a space X as follows: first we take the wedge sum of 3 copies of S^{1} (we name the generator of π_{1} of each by a, b and c respectively): $\bigvee S^{1}$. Then we attach to it two discs D^{2} via the maps on the boundary corresponding to the relations above, i.e. first disc will be attached via map $f: S^{1} \longrightarrow \bigvee S^{1}$ shown on the picture:

and the second disc will be attached via the map on the boundary of $D^{2} g: S^{1} \longrightarrow \bigvee S^{1}$ shown on the picture:

(3 marks)
We call this space X. Now we need to prove that $\pi_{1}(X)$ is as required. We will use the Van Kampen's theorem to do that. We can present X as a following pushout, where all discs are open and all copies of S^{1} are made open by taking a homotopy equivalent spaces $(-\varepsilon, \varepsilon) \times S^{1}$:

where ∂ denotes the inclusion of the collar into D^{2}.
The above changes make it possible to use Van Kampen's theorem, but they won't change the corresponding homotopy groups, so we stick to the notation S^{1} :

We get the following diagram of groups and homomorphisms:

Using Van Kampen's theorem we get $\pi_{1}(X)=\left\langle a, b, c \mid a^{2} b c, a c b\right\rangle$ as required. (3 marks)
(a) A singular n-simplex in X is a continuous map $\Delta^{n} \rightarrow X$ where Δ^{n} is the standard n-simplex. In the singular chain complex of X, $C_{n}(X)$ is the free abelian group generated by all the singular n simplices in X. The boundary map $\delta_{n}: C_{n}(X) \rightarrow C_{n-1}(X)$ is the group homomorphism determined on generators as follows: for an n simplex $f: \Delta^{n} \rightarrow X, \delta_{n}(f)=\sum_{i=0}^{n}(-1)^{i} f_{i}$, where f_{i} is the restriction of f to the i-th face of $\Delta^{n}, f_{i}: \Delta^{n-1} \cong \Delta_{i}^{n-1} \rightarrow X$.
(b) $\quad C_{n}(f): C_{n}(X) \rightarrow C_{n}(Y)$ is the group homomorphism determined on generators by post-composition with f. That is, for $\sigma: \Delta^{n} \rightarrow X$ in $C_{n}(X)$, we define $C_{n}(f)(\sigma)=f \sigma: \Delta^{n} \rightarrow Y$ and we extend linearly.
(2 marks)
(c) Since all the maps are group homomorphisms, it's enough to check the required relation on generators. Let $\sigma \in C_{n}(X)$ be an n-simplex. Then

$$
\begin{aligned}
C_{n-1}(f)\left(\delta_{n}(\sigma)\right) & =C_{n-1}(f)\left(\sum_{i}(-1)^{i} \sigma \mid\left[v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right]\right) \\
& =\sum_{i}(-1)^{i} f \sigma \mid\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right] \\
& =\sum_{i}(-1)^{i} C_{n}(f)(\sigma) \mid\left[v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right]=\delta_{n} C_{n}(f)(\sigma) .
\end{aligned}
$$

3 (continued)
(ii) (unseen, similar to homework problems)

Clearly, $H_{\geq 4}=0$ and $H_{3}=\operatorname{ker} \delta_{3}=0$.

$$
\begin{aligned}
\operatorname{ker} \delta_{2} & =\{p b+q c+r d \mid p(15 e-6 f)+q(30 e-12 f)+r(15 e-6 f)=0, p, q, r \in \mathbb{Z}\} \\
& =\{p b+q c+r d \mid 15 p+30 q+15 r=0,-6 p-12 q-6 r=0, p, q, r \in \mathbb{Z}\} \\
& =\{p b+q c+r d \mid p+2 q+r=0, p, q, r \in \mathbb{Z}\} \\
& =\{p b+q c+r d \mid r=-p-2 q, p, q \in \mathbb{Z}\} \\
& =\{p b+q c+(-p-2 q) d \mid p, q \in \mathbb{Z}\} \\
& =\{p(b-d)+q(c-2 d) \mid p, q \in \mathbb{Z}\} \\
& =\mathbb{Z}\{b-d\} \oplus \mathbb{Z}\{c-2 d\}
\end{aligned}
$$

and

$$
\operatorname{Im} \delta_{3}=\mathbb{Z}\{7(b-d)\} .
$$

So

$$
H_{2}=\frac{\operatorname{ker} \delta_{2}}{\operatorname{Im} \delta_{3}}=\frac{\mathbb{Z}\{b-d\} \oplus \mathbb{Z}\{c-2 d\}}{\mathbb{Z}\{7(b-d)\}} \cong \mathbb{Z} / 7 \oplus \mathbb{Z} .
$$

$\operatorname{ker} \delta_{1}=\{p e+q f \mid 2 p g+5 q g=0, p, q \in \mathbb{Z}\}=\{p e+q f \mid 2 p=-5 q, p, q \in \mathbb{Z}\}$

$$
=\{5 r e-2 r f \mid r \in \mathbb{Z}\}=\mathbb{Z}\{5 e-2 f\} .
$$

and

$$
\operatorname{Im} \delta_{2}=\mathbb{Z}\{15 e-6 f\}
$$

So $H_{1}=\mathbb{Z} / 3$.
$\operatorname{Im} \delta_{1}=\mathbb{Z}\{g\}$, since $g=\delta_{1}(f-2 e)$, so $H_{0}=0$.
(iii) (unseen, similar to homework problems)
(a) The chain complex is

$$
0 \xrightarrow{0} \mathbb{Z}\{\alpha\} \xrightarrow{\delta_{2}} \mathbb{Z}\{a\} \oplus \mathbb{Z}\{b\} \xrightarrow{\delta_{1}} \mathbb{Z}\{x\} \oplus \mathbb{Z}\{y\} \xrightarrow{0} 0
$$

where δ_{2} is determined by $\delta_{2}(\alpha)=a$ and δ_{1} is determined by $\delta_{1}(a)=$ 0 and $\delta_{1}(b)=x-y$.
(2 marks)
Its homology groups are $H_{\geq 3}=0, H_{2}=\operatorname{ker} \delta_{2}=0, H_{1}=\frac{\operatorname{ker} \delta_{1}}{\operatorname{Im} \delta_{2}}=$ $\frac{\mathbb{Z}\{a\}}{\mathbb{Z}\{a\}}=0$ and $H_{0}=\frac{\mathbb{Z}\{x\} \oplus \mathbb{Z}\{y\}}{\mathbb{Z}\{x-y\}} \cong \mathbb{Z}$.
(b) The space is a cone on a circle and hence contractible, so the homology groups are those of any contractible space.
(1 mark)

4 (i) (unseen, similar to homework problems)
(a) $\quad C_{*}(X)$ is

$$
0 \xrightarrow{0} \mathbb{Z}\{\alpha\} \oplus \mathbb{Z}\{\beta\} \xrightarrow{\delta_{2}} \mathbb{Z}\{a\} \oplus \mathbb{Z}\{b\} \oplus \mathbb{Z}\{c\} \xrightarrow{\delta_{1}} \mathbb{Z}\{x\} \oplus \mathbb{Z}\{y\} \oplus \mathbb{Z}\{z\} \xrightarrow{0} 0
$$

where δ_{2} is determined by $\delta_{2}(\alpha)=c$ and $\delta_{2}(\beta)=-c$ and δ_{1} is determined by $\delta_{1}(a)=y-x, \delta_{1}(b)=z-x$ and $\delta_{1}(c)=0$.
(2 marks)
$C_{*}(A)$ is

$$
0 \xrightarrow{0} \mathbb{Z}\{c\} \xrightarrow{\delta_{1}=0} \mathbb{Z}\{x\} \xrightarrow{0} 0
$$

(1 mark)
$C_{*}(X, A)$ is

$$
0 \xrightarrow{0} \mathbb{Z}\{\alpha\} \oplus \mathbb{Z}\{\beta\} \xrightarrow{\delta_{2}} \mathbb{Z}\{a\} \oplus \mathbb{Z}\{b\} \xrightarrow{\delta_{1}} \mathbb{Z}\{y\} \oplus \mathbb{Z}\{z\} \xrightarrow{0} 0
$$

with maps induced from those in $C_{*}(X)$, so $\delta_{2}=0, \delta_{1}(a)=y$, $\delta_{1}(b)=z$.
(1 mark)
(b) $\quad H_{\geq 3}(X, A)=0, H_{2}(X, A)=\operatorname{ker} \delta_{2}=\mathbb{Z}\{\alpha\} \oplus \mathbb{Z}\{\beta\}$.
$H_{1}(X, A)=\frac{\operatorname{ker} \delta_{1}}{\operatorname{Im} \delta_{2}}=0$.
(1 mark)
$H_{0}(X, A)=\frac{\mathbb{Z}\{y\} \oplus \mathbb{Z}\{z\}}{\operatorname{Im} \delta_{1}}=\frac{\mathbb{Z}\{y\} \oplus \mathbb{Z}\{z\}}{\mathbb{Z}\{y\} \oplus \mathbb{Z}\{z\}}=0$.
(1 mark)
(c) The space X consists of two cones on a circle glued along the circle. The subspace A is this circle. The quotient space has the homotopy type of a wedge of two 2 -spheres. The reduced homology groups of this space are the ones calculated in part (b), since we know the reduced homology of a 2 -sphere is a single copy of \mathbb{Z} in degree 2 and that reduced homology takes wedges to direct sums.
(3 marks)
(ii) (unseen)
(a) If $A \cap B \neq \emptyset$, we have the reduced homology version of the MayerVietoris long exact sequence:

$$
\begin{array}{r}
\cdots \longrightarrow \widetilde{H}_{n}(A \cap B) \longrightarrow \widetilde{H}_{n}(A) \oplus \widetilde{H}_{n}(B) \longrightarrow \widetilde{H}_{n}(X) \\
\longleftrightarrow \widetilde{H}_{n-1}(A \cap B) \longrightarrow \widetilde{H}_{n-1}(A) \oplus \widetilde{H}_{n-1}(B) \longrightarrow \widetilde{H}_{0}(A) \oplus \widetilde{H}_{0}(B) \longrightarrow \widetilde{H}_{0}(X) \longrightarrow 0 \\
\cdots \longrightarrow \\
\text { (2 marks) }
\end{array}
$$

By assumption, $\widetilde{H}_{n}(X)$ appears between zero groups in an exact sequence, for all $n \geq 0$, so

$$
\widetilde{H}_{n}(X)=\operatorname{ker}(\text { outgoing } \operatorname{map})=\operatorname{Im}(\text { incoming } \operatorname{map})=0
$$

(b) Write $Y=X \cup C$, where $X=A \cup B$. By part (a), $\widetilde{H}_{n}(X)=0$ for all $n \geq 0$.
(1 mark)
Now consider $X \cap C=P \cup Q$ where $P=A \cap C$ and $Q=B \cap C$.
(1 mark)
We can apply the unreduced M-V sequence to $P \cup Q$, using $P \cap Q=$ $A \cap B \cap C$ and this time, by the argument seen in part (a), we will get for $n \geq 1, \widetilde{H}_{n}(P \cup Q)=H_{n}(P \cup Q)=0$.
(1 mark)
Now we apply M-V one more time for $Y=X \cup C$. We will have $\widetilde{H}_{n}(Y)=H_{n}(Y)$ appearing between zero groups, this time for $n \geq 2$, so $\widetilde{H}_{n}(Y)=0$ for $n \geq 2$ as required.
(1 mark)
Finally, for the example, we can take $Y=S^{1}$, covered by three nicely overlapping open $\operatorname{arcs} A, B, C$ such that A, B, C and all the pairwise intersections are contractible, but the triple intersection is empty. Here $\widetilde{H}_{1}\left(S^{1}\right)=\mathbb{Z}$.
(2 marks)

End of Question Paper

