

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2018–2019

Algebraic Topology

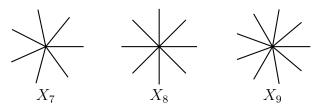
2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

1 (a) Given a topological space X, define the set $\pi_0(X)$. You should include a proof that the relevant equivalence relation is in fact an equivalence relation.

(8 marks)

(b) Consider [0,1] as a based space with 0 as the basepoint. For $n \geq 3$ we define $X_n = \{z \in \mathbb{C} \mid z^n \in [0,1]\}$:



- (i) For which n and m (with $n, m \ge 3$) is X_n homotopy equivalent to X_m ?

 (3 marks)
- (ii) For which n and m (with $n, m \ge 3$) is X_n homeomorphic to X_m ?

 (4 marks)

Justify your answers carefully.

(c) Give examples as follows, with justification:

(1) A based space W with
$$|\pi_1(W)| = 8$$
. (3 marks)

- (2) A space X with two points $a, b \in X$ such that $\pi_1(X, a)$ is not isomorphic to $\pi_1(X, b)$. (3 marks)
- (3) A space Y such that $H_0(Y) \simeq H_2(Y) \simeq H_4(Y) \simeq H_6(Y) \simeq \mathbb{Z}$ and all other homology groups are trivial. (4 marks)

- 2 Are the following true or false? Justify your answers.
 - (a) S^5 is a Hausdorff space. (4 marks)
 - (b) The Klein bottle is a retract of $S^1 \times S^1 \times S^1$. (4 marks)
 - (c) There is a connected space X with $\pi_1(X) \simeq \mathbb{Z}/2$ and $H_1(X) \simeq \mathbb{Z}$. (4 marks)
 - (d) There is a short exact sequence $\mathbb{Z}/9 \to \mathbb{Z}/99 \to \mathbb{Z}/11$. (4 marks)
 - (e) If K is a simplicial complex and L is a subcomplex and $H_3(K) = 0$ then $H_3(L) = 0$. (4 marks)
 - (f) If K and L are simplicial complexes and $f: |K| \to |L|$ is a continuous map then there is a simplicial map $s: K \to L$ such that f is homotopic to |s|.

 (5 marks)
- 3 Let K and L be abstract simplicial complexes.
 - (a) Define what is meant by a simplicial map from K to L. (3 marks)
 - (b) Let $s, t: K \to L$ be simplicial maps. Define what it means for s and t to be directly contiguous. (3 marks)
 - (c) Prove that if s and t are directly contiguous, then the resulting maps $|s|, |t|: |K| \to |L|$ are homotopic. (3 marks)
 - (d) Prove that if s and t are directly contiguous, then the resulting maps $s_*, t_* \colon H_*(K) \to H_*(L)$ are the same. (You can prove the main formula just for n = 3 rather than general n.)

 (9 marks)
 - (e) How many injective simplicial maps are there from $\partial \Delta^2$ to itself? Show that no two of them are directly contiguous. (7 marks)

- 4 Let $U_* \xrightarrow{i} V_* \xrightarrow{p} W_*$ be a short exact sequence of chain complexes and chain maps.
 - (a) Define what is meant by saying that the above sequence is short exact.

(3 marks)

Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

- $c \in H_n(W)$;
- $w \in Z_n(W)$ is a cycle such that c = [w];
- $v \in V_n$ is an element with p(v) = w;
- $u \in Z_{n-1}(U)$ is a cycle with $i(u) = d(v) \in V_{n-1}$;
- $\bullet \ a = [u] \in H_{n-1}(U).$
- (b) Prove that for each $c \in H_n(W)$ there is a snake starting with c. (8 marks)
- (c) Prove that if two snakes have the same starting point, then they also have the same endpoint.

 (10 marks)
- (d) Suppose that the differential $d: V_{n+1} \to V_n$ is surjective. Show that any snake starting in $H_n(W)$ ends with zero. (4 marks)
- Consider a simplicial complex K with subcomplexes L and M such that $K = L \cup M$. Use the following notation for the inclusion maps:

$$\begin{array}{ccc} L \cap M & \stackrel{i}{\longrightarrow} & L \\ \downarrow \downarrow & & \downarrow f \\ M & \stackrel{g}{\longrightarrow} & K. \end{array}$$

- (a) State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above). (4 marks)
- (b) State the Mayer-Vietoris Theorem.

- (5 marks)
- (c) State a theorem about the relationship between π_1 and H_1 . (3 marks)
- (d) Suppose that |L|, |M| and $|L \cap M|$ are all homotopy equivalent to S^1 . Suppose that the maps i and j both have degree two.
 - (1) Find a presentation for $\pi_1|K|$. (3 marks)
 - (2) Find $H_*(K)$. In particular, you should express each nonzero group as a direct sum of terms like \mathbb{Z} or \mathbb{Z}/n . (10 marks)

End of Question Paper