Algebraic Topology

(1) For $n \geq 3$, we put $X_{n}=\mathbb{R}^{2} \backslash\{(1,0),(2,0), \ldots,(n, 0)\}$.
(a) Define the following terms: topology, topological space, continuous map, homeomorphism. (7 marks)
(b) Find a space Y_{n} consisting of a finite number of straight line segments that is homotopy equivalent to X_{n}. Give a brief justification for the claim that Y_{n} is homotopy equivalent to X_{n}. (6 marks)
(c) Prove that X_{n} is not homeomorphic to Y_{n}. (3 marks)
(d) Prove that X_{n} is not homotopy equivalent to S^{m} for any m. (4 marks)
(e) Find contractible open sets $U_{n}, V_{n} \subseteq \mathbb{C}$ such that $X_{n}=U_{n} \cup V_{n}$. Give a careful proof that U_{n} and V_{n} are contractible. (5 marks)

Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not required.

Solution:

(a) A topology on a set X is a family τ of subsets of X (called open sets) [1] such that
(1) The empty set and the whole set X are open [1]
(2) The union of any family of open sets is open [1]
(3) The intersection of any finite list of open sets is open. [1]

A topological space is a st equipped with a topology. If X and Y are topological spaces, a continuous map from X to Y is a function $f: X \rightarrow Y$ such that for every open set $V \subseteq Y$, the preimage $f^{-1}(V)$ is open in X [2]. A homeomorphism from X to Y is a bijective map $f: X \rightarrow Y$ with the property that both $f: X \rightarrow Y$ and $f^{-1}: Y \rightarrow X$ are continuous [1].
(b) We define Y_{n} to be the union of line segments from $\left[\frac{1}{2}, n+\frac{1}{2}\right] \times\left\{ \pm \frac{1}{2}\right\}$ and $\left\{i+\frac{1}{2}\right\} \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ for $0 \leq i \leq n[3]$:

Let $i: Y_{n} \rightarrow X_{n}$ be the inclusion. The dotted arrows indicate a continuous map $r: X_{n} \rightarrow Y_{n}$ such that $r i=\mathrm{id}$ and $i r$ is homotopic to the identity by a straight line homotopy; this proves that Y_{n} is homotopy equivalent to X_{n}. [3]
(c) The space Y_{n} is a bounded and closed subspace of \mathbb{R}^{2}, so it is compact. The space X_{n} is unbounded and so is not compact. It follows that X_{n} cannot be homeomorphic to Y_{n}. [3]
(d) It was proved in the notes that

$$
H_{i}\left(X_{n}\right) \simeq \begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z}^{n} & \text { if } i=1 \\ 0 & \text { otherwise } .[2]\end{cases}
$$

In particular, the total rank of all the homology groups of X_{n} is $n+1 \geq 4$, whereas the total rank of all homology groups of S^{m} is 2 . Homotopy equivalent spaces have isomorphic homology, so X_{n} cannot be homotopy equivalent to S^{m}. [2]
(e) Put $A_{n}=\{1, \ldots, n\} \times[0, \infty)$ and $B_{n}=\{1, \ldots, n\} \times(-\infty, 0]$. These are closed subsets of \mathbb{R}^{2} with $A_{n} \cap B_{n}=$ $\{(1,0), \ldots,(n, 0)\}$. It follows that the sets $U_{n}=\mathbb{R}^{2} \backslash A_{n}$ and $V_{n}=\mathbb{R}^{2} \backslash B_{n}$ are open with $U_{n} \cup V_{n}=\mathbb{R}^{2} \backslash\left(A_{n} \cap B_{n}\right)=$ X_{n} [2]. Define $p, q: U_{n} \rightarrow U_{n}$ by $p(x, y)=(x,-1)$ and $q(x, y)=(0,-1)$. If $(x, y) \in U_{n}$ then the line segment from (x, y) to $p(x, y)$ is vertical, and the line segment from $p(x, y)$ to $q(x, y)$ is horizontal, and neither segment touches A_{n}. Thus, we have straight line homotopies from the identity to p and then from p to the constant map q, proving that U_{n} is contractible.

Essentially the same argument (using $r(x, y)=(x, 1)$ and $s(x, t)=(0,1))$ proves that V_{n} is contractible. [3]
(2)
(a) Let X be a topological space. Define the equivalence relation \sim on X such that $\pi_{0}(X)=X / \sim$, and prove that it is an equivalence relation. (6 marks)
(b) Let $f: X \rightarrow Y$ be a continuous map. Define the induced map $f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$, and prove that it is welldefined. (4 marks)
(c) Show that if $f, g: X \rightarrow Y$ are homotopic maps then $f_{*}=g_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$. (4 marks)
(d) Let Y and Z be topological spaces. Construct a bijection $\pi_{0}(Y \times Z) \rightarrow \pi_{0}(Y) \times \pi_{0}(Z)$, and prove that it is a bijection. (5 marks)
(e) Define $i: \mathbb{Z} \rightarrow \mathbb{R} \backslash \mathbb{Z}$ by $i(n)=n+\frac{1}{2}$. Prove that there do not exist continuous maps $\mathbb{Z} \xrightarrow{f} S^{2} \times S^{2} \xrightarrow{g} \mathbb{R} \backslash \mathbb{Z}$ such that i is homotopic to $g \circ f$. (6 marks)

Solution:

(a) We write $x \sim y$ iff there is a path in X from x to y, in other words a continuous map $s: I \rightarrow X$ such that $s(0)=x$ and $s(1)=y$ [2]. For any $x \in X$ we can define $c_{x}: I \rightarrow X$ by $c_{x}(t)=x$ for all t; this is a path from x to x, proving that $x \sim x$ [1]. If $x \sim y$ then there is a path s from x to y and we can define a path \bar{s} from y to x by $\bar{s}(t)=s(1-t)$; this shows that $y \sim x$ [1]. If there is also a path r from y to z then we can define a path $s * r$ from x to z by

$$
(s * r)(t)= \begin{cases}s(2 t) & \text { if } 0 \leq t \leq 1 / 2 \\ r(2 t-1) & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

This is well-defined because $s(1)=y=r(0)$, and it is continuous by closed patching [1]. This shows that $x \sim z$ [1]. Thus \sim is reflexive, symmetric and transitive and thus is an equivalence relation.
(b) Let c be an element of $\pi_{0}(X)$, in other words a path component in X. For any $x \in c$ we have a point $f(x) \in Y$, and thus a path-component $[f(x)] \in \pi_{0}(Y)$. If x^{\prime} is another point in c then $x \sim x^{\prime}$ so we can choose a path s from x to x^{\prime} in $X[1]$. Thus $f \circ s: I \rightarrow Y$ is a path in Y from $f(x)$ to $f\left(x^{\prime}\right)[1]$, so $f(x) \sim f\left(x^{\prime}\right)$, so $[f(x)]=\left[f\left(x^{\prime}\right)\right]$ [1]. We can thus define $f_{*}(c)=[f(x)]$; this is independent of the choice of x and thus is well-defined [1].
(c) If $f, g: X \rightarrow Y$ are homotopic then we can chooose a map $h: I \rightarrow X \rightarrow Y$ such that $h(0, x)=f(x)$ and $h(1, x)=g(x)$ for all $x[1]$. If $c \in \pi_{0}(X)$ we can choose $x \in X$ and note that $f_{*}(c)=[f(x)]$ and $g_{*}(c)=[g(x)]$. We can also define a map $s: I \rightarrow Y$ by $s(t)=h(t, x)$ [2]. This gives a path from $s(0)=f(x)$ to $s(1)=g(x)$, so $[f(x)]=[g(x)]$, in other words $f_{*}(c)=g_{*}(c)[1]$.
(d) Suppose we have topological spaces Y and Z. Let $p: Y \times Z \rightarrow Y$ and $q: Y \times Z \rightarrow Z$ be the projection maps, defined by $p(y, z)=y$ and $q(y, z)=z[1]$. Define $\phi: \pi_{0}(Y \times Z) \rightarrow \pi_{0}(Y) \times \pi_{0}(Z)$ by $\phi(c)=\left(p_{*}(c), q_{*}(c)\right)$, so $\phi([y, z])=([y],[z])[1]$. Any element of $\pi_{0}(Y) \times \pi\left(0(Z)\right.$ has the form (b, c), where $b \in \pi_{0}(Y)$ and $c \in \pi_{0}(Z)$. We can then choose $y \in Y$ and $z \in Z$ such that $b=[y]$ and $c=[z]$. This gives an element $(y, z) \in Y \times Z$ and a path component $[y, z] \in \pi_{0}(Y \times Z)$ with $\phi([y, z])=([y],[z])=(b, c)$. This shows that ϕ is surjective [1]. Now suppose we have two path components $[y, z]$ and $\left[y^{\prime}, z^{\prime}\right]$ in $\pi_{0}(Y \times Z)$ which satisfy $\phi([y, z])=\phi\left(\left[y^{\prime}, z^{\prime}\right]\right)$. This means that $([y],[z])=\left(\left[y^{\prime}\right],\left[z^{\prime}\right]\right)$, so $[y]=\left[y^{\prime}\right]$ and $[z]=\left[z^{\prime}\right]$. As $[y]=\left[y^{\prime}\right]$ in $\pi_{0}(Y)$ we can choose a continuous map $v:[0,1] \rightarrow Y$ with $v(0)=y$ and $v(1)=y^{\prime}$. Similarly, we can choose a continuous map $w:[0,1] \rightarrow Z$ with $w(0)=z$ and $w(1)=z^{\prime}$. Now define $u:[0,1] \rightarrow Y \times Z$ by $u(t)=(v(t), w(t))$, noting that this is continuous by the universal property of the product topology. We have $u(0)=(y, z)$ and $u(1)=\left(y^{\prime}, z^{\prime}\right)$ so $[y, z]=\left[y^{\prime}, z^{\prime}\right]$ in $\pi_{0}(Y \times Z)$ [2]. This proves that ϕ is also injective, and so is a bijection.
(e) Suppose (for a contradiction) that i is homotopic to $g \circ f$ for some continuous maps $\mathbb{Z} \xrightarrow{f} S^{2} \times S^{2} \xrightarrow{g} \mathbb{R} \backslash \mathbb{Z}$ [1]. It then follows from (c) that $i_{*}=g_{*} \circ f_{*}$ [1]. However, it is standard that S^{2} is path connected [1], or equivalently that $\left|\pi_{0}\left(S^{2}\right)\right|=1$. It follows using (d) that $S^{2} \times S^{2}$ is also path connected [1], so $f_{*}([-1])=f_{*}([0])$ in $\pi_{0}\left(S^{2} \times S^{2}\right)$, so $g_{*}\left(f_{*}([-1])\right)=g_{*}\left(f_{*}([0])\right)$, so $i_{*}([-1])=i_{*}([0])$ in $\pi_{0}(\mathbb{R} \backslash \mathbb{Z})[1]$. This means that there is a path from $-\frac{1}{2}$ to $\frac{1}{2}$ in $\mathbb{R} \backslash \mathbb{Z}$, which violates the Intermediate Value Theorem[1].
(3)
(a) Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ be a short exact sequence of chain complexes and chain maps. Define what is meant by a snake for this sequence. (5 marks)
(b) Define the homomorphism $\delta: H_{n}(W) \rightarrow H_{n-1}(U)$. You should give a clear statement of the lemmas needed to ensure that your definition is meaningful, but you do not need to prove those lemmas. (4 marks)
(c) Suppose that $H_{k}(W)$ is finite for all k, and that $H_{k}(U) \simeq \mathbb{Z}$ for all k. Prove that $H_{k}(V)$ is infinite and that the map $p_{*}: H_{k}(V) \rightarrow H_{k}(W)$ is surjective. (5 marks)
(d) Consider the chain complex with $A_{k}=\mathbb{Z}^{3}$ for all $k \in \mathbb{Z}$ and $d(x, y, z)=(z, 0,0)$.
(i) Find the homology of A_{*}. (2 marks)
(ii) Show that the formula $m(x, y, z)=(0, y, 0)$ defines a chain map m : $A_{*} \rightarrow A_{*}$ (2 marks)
(iii) Show that m is chain homotopic to the identity. (3 marks)
(iv) Construct a chain complex A_{*}^{\prime} where the differential is zero, and a chain homotopy equivalence from A_{*}^{\prime} to A_{*}. (4 marks)

Solution:

(a) A snake is a list (c, w, v, u, a) where
$-c \in H_{k}(W)[1]$
$-w \in Z_{k}(W)$ is a cycle with $c=[w][1]$
$-v \in V_{k}$ satisfies $p(v)=w[1]$
$-u \in Z_{k-1}(U)$ satisfies $i(u)=d(v)[1]$
$-a=[u] \in H_{k-1}(U) .[1]$
(b) It can be shown that
(1) For any $c \in H_{k}(W)$, there exists a snake (c, w, v, u, a) starting with c. [1]
(2) If we have snakes (c, w, v, u, a) and $\left(c, w^{\prime}, v^{\prime}, u^{\prime}, a^{\prime}\right)$ both starting with c, then $a=a^{\prime}$. [1]

We can therefore define $\delta: H_{k}(W)$ by $\delta(c)=a$, for any snake (c, w, v, u, a) that starts with c. [2]
(c) The Snake Lemma gives exact sequences

$$
H_{k+1}(W) \xrightarrow{\delta} H_{k}(U) \xrightarrow{i_{*}} H_{k}(V) \xrightarrow{p_{*}} H_{k}(W) \xrightarrow{\delta} H_{k-1}(U)[1]
$$

For every element c in the finite group $H_{k}(W)$ we know that c has finite order, so the element $\delta(c) \in H_{k-1}(U)$ also has finite order. However, $H_{k-1}(U) \simeq \mathbb{Z}$ so the only element of finite order in this group is zero. It follows that all the maps δ are zero [1], and thus that the sequence

$$
H_{k}(U) \xrightarrow{i_{*}} H_{k}(V) \xrightarrow{p_{*}} H_{k}(W)
$$

is short exact [1]. This means that p_{*} is surjective [1], as required. It also means that i_{*} is injective and $H_{k}(U) \simeq \mathbb{Z}$ is infinite so $H_{k}(V)$ must also be infinite [1].
(d) (i) We have

$$
\begin{aligned}
B_{k}(A) & =\operatorname{img}(d)=\mathbb{Z} \oplus 0 \oplus 0 \\
Z_{k}(A) & =\{(x, y, z) \mid(z, 0,0)=(0,0,0)\}=\{(x, y, 0) \mid x, y \in \mathbb{Z}\} \\
& =\mathbb{Z} \oplus \mathbb{Z} \oplus 0 \\
H_{k}(A) & =(\mathbb{Z} \oplus \mathbb{Z} \oplus 0) /(\mathbb{Z} \oplus 0 \oplus 0) \simeq \mathbb{Z}
\end{aligned}
$$

Explicitly, we have $H_{k}(A)=\mathbb{Z} . h$, where $h=[(0,1,0)][2]$.
(ii) From the formulae $d(x, y, z)=(z, 0,0)$ and $m(x, y, z)=(0, y, 0)$ we get $d(m(x, y, z))=d(0, y, 0)=(0,0,0)$ and $m(d(x, y, z))=m(z, 0,0)=(0,0,0)$. This shows that $d m=m d$, so m is a chain map [2].
(iii) Now define $s(x, y, z)=(0,0, x)$ [1]. This has $d(s(x, y, z))=d(0,0, x)=(x, 0,0)$ and $s(d(x, y, z))=$ $s(z, 0,0)=(0,0, z)$ so

$$
(d s+s d)(x, y, z)=(x, 0, z)=(\mathrm{id}-m)(x, y, z)
$$

so s gives a chain homotopy between id and m [2].
(iv) Now define $A_{k}^{\prime}=\mathbb{Z}$, with $d^{\prime}=0: A_{k}^{\prime} \rightarrow A_{k-1}^{\prime}$ [1]. Define $i: A_{k}^{\prime} \rightarrow A_{k}$ by $i(y)=(0, y, 0)[1]$ and $r: A_{k} \rightarrow A_{k}^{\prime}$ by $r(x, y, z)=y[1]$. These are chain maps with r id and $i r=m$ so $i r$ is chain homotopic to id [1]. This means that i is a chain homotopy equivalence from A_{*}^{\prime} to A_{*}.
(4) For each of the following, either give an example (with justification) or prove that no example can exist.
(a) A continuous map $f: X \rightarrow Y$ such that $f_{*}: H_{1}(X) \rightarrow H_{1}(Y)$ is injective but not surjective, and $f_{*}: H_{10}(X) \rightarrow$ $H_{10}(Y)$ is surjective but not injective. (5 marks)
(b) A path connected space X that is homotopy equivalent to $X \times X$. (5 marks)
(c) A path connected space X that is not homotopy equivalent to $X \times X$. (5 marks)
(d) A space X and a point $x \in X$ such that X is not contractible but $X \backslash\{x\}$ is contractible. (5 marks)
(e) A subspace $X \subseteq \mathbb{R}^{2}$ that is homotopy equivalent to $S^{4} \backslash S^{2}$. (5 marks)

Solution:

(a) Let $f: S^{10} \rightarrow S^{1}$ be the constant map sending all of S^{10} to the point $e_{0} \in S^{1}[3]$. Then $f_{*}: H_{1}\left(S^{10}\right) \rightarrow H_{1}\left(S^{1}\right)$ is the inclusion $0 \rightarrow \mathbb{Z}$, which is injective but not surjective [1]. Moreover, $f_{*}: H_{10}\left(S^{10}\right) \rightarrow H_{10}\left(S^{1}\right)$ is the zero homomorphism $\mathbb{Z} \rightarrow 0$, which is surjective but not injective [1].
(b) The spaces $I=[0,1]$ and $I \times I$ are both homotopy equivalent to a point, and thus to each other [5]. (For a more degenerate example, one could just take X to be a point.)
(c) The space S^{1} is not homotopy equivalent to $S^{1} \times S^{1}[3]$ (because $H_{1}\left(S^{1}\right)=\mathbb{Z}$ is not isomorphic to $H_{1}\left(S^{1} \times S^{1}\right)=$ $\mathbb{Z} \times \mathbb{Z})$ [2].
(d) S^{1} [3] is not contractible (because $H_{1}\left(S^{1}\right)=\mathbb{Z}$ is nontrivial [1]) but $S^{1} \backslash\{1\}$ is homeomorphic to \mathbb{R} and thus is contractible [1].
(e) In general, $S^{n} \backslash S^{m}$ is homotopy equivalent to S^{n-m-1} [2]. In particular, the space $S^{4} \backslash S^{2}$ is homotopy equivalent to S^{1}, which is a subset of $\mathbb{R}^{2}[3]$.
(5) Let X be a path connected space, and put

$$
\begin{aligned}
U & =\left\{(t, x) \in S^{1} \times X \mid t \neq(0,1)\right\} \\
V & =\left\{(t, x) \in S^{1} \times X \mid t \neq(0,-1)\right\}
\end{aligned}
$$

We use the usual notation for inclusion maps:

(a) Define maps $f, g: X \rightarrow U \cap V$ such that f gives a homotopy equivalence from X to one path component of $U \cap V$, and g gives a homotopy equivalence from X to the other path component of $U \cap V$. (4 marks)
(b) Prove that the map $i^{\prime}=i \circ f: X \rightarrow U$ is homotopic to $i \circ g$, and also that i^{\prime} is a homotopy equivalence. (You can then assume without further argument that the map $j^{\prime}=j \circ f: X \rightarrow V$ is homotopic to $j \circ g$, and that j^{\prime} is a homotopy equivalence.) (6 marks)
(c) Deduce descriptions of the homology groups $H_{p}(U \cap V), H_{p}(U)$ and $H_{p}(V)$, and the homomorphism

$$
\alpha=\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]: H_{p}(U \cap V) \rightarrow H_{p}(U) \oplus H_{p}(V)
$$

Find the kernel and image of α. (8 marks)
(d) Show that every element of $H_{p}(U) \oplus H_{p}(V)$ can be written as $\left(i_{*}^{\prime}(a), 0\right)+\alpha(b)$ for a unique pair $(a, b) \in H_{p}(X)^{2}$. (3 marks)
(e) Deduce that there is a short exact sequence $H_{p}(X) \rightarrow H_{p}\left(S^{1} \times X\right) \rightarrow H_{p-1}(X)$. (4 marks)

Solution:

(a) The path components of $S^{1} \backslash\{(0,1),(0,-1)\}$ are $A=[(-1,0)]=\left\{(x, y) \in S^{1} \mid x<0\right\}$ and $B=[(+1,0)]=$ $\left\{(x, y) \in S^{1} \mid x>0\right\}$, so the path components of $U \cap V$ are $A \times X$ and $B \times X$ [2]. Here A is contractible and contains $(-1,0)$ so the map $f(x)=((-1,0), x)$ gives a homotopy equivalence from X to $A \times X$. Similarly, the map $g(x)=((1,0), x)$ gives a homotopy equivalence from X to $B \times X$ [2].
(b) We can define $h(t, x)=((-\cos (\pi t),-\sin (\pi t)), x)$ for $0 \leq t \leq 1$. As $(-\cos (\pi t),-\sin (\pi t))$ lies on the bottom half of S^{1}, this does not pass through $(0,1) \times X$ and so gives a continuous map $[0,1] \times X \rightarrow U$. It satisfies $h(0, x)=((-1,0), x)=i(f(x))=i^{\prime}(x)$ and $h(1, x)=((1,0), x)=i(g(x))$, so this gives a homotopy between i^{\prime} and $i \circ g$ [3]. We can also define $r: U \rightarrow X$ by $r(t, x)=x$. Then $r \circ i^{\prime}=$ id, and contractibility of $S^{1} \backslash\{(0,1)\}$ ensures that $i^{\prime} r$ is homotopic to the identity [3].
(c) As $f: X \rightarrow A \times X$ and $g: X \rightarrow B \times X$ are homotopy equivalences, we see that every element of $H_{p}(U \cap V)$ can be written as $f_{*}(a)+g_{*}(b)$ for a unique pair $(a, b) \in H_{p}(X)^{2}$. [2] Similarly, any element of $H_{p}(U) \oplus H_{p}(V)$ can be written as $\left(i_{*}^{\prime}(a), j_{*}^{\prime}(b)\right)$ for a unique pair $(a, b) \in H_{p}(X)^{2}[2]$. As $i_{*} f_{*}=i_{*} g_{*}=i_{*}^{\prime}$ and $j_{*} f_{*}=j_{*} g_{*}=j_{*}^{\prime}$ we see that

$$
\alpha\left(f_{*}(a)+g_{*}(b)\right)=\left(i_{*}^{\prime}(a+b),-j_{*}^{\prime}(a+b)[2] .\right)
$$

This means that

$$
\begin{aligned}
\operatorname{ker}(\alpha) & =\left\{f_{*}(a)-g_{*}(a) \mid a \in H_{p}(X)\right\} \simeq H_{p}(X)[1] \\
\operatorname{img}(\alpha) & =\left\{\left(i_{*}^{\prime}(c),-j_{*}^{\prime}(c)\right) \mid c \in H_{p}(X)\right\} \simeq H_{p}(X)[1] .
\end{aligned}
$$

(d) We now see that every element $\left(i_{*}^{\prime}(a), j_{*}^{\prime}(b)\right) \in H_{p}(U) \oplus H_{p}(V)$ can be written as $\left(i_{*}^{\prime}(a+b), 0\right)+\left(i_{*}^{\prime}(-b), j_{*}^{\prime}(-b)\right)$ with the second term lying in $\operatorname{img}(\alpha)$, and this decomposition is unique [3].
(e) From the exact sequence

$$
H_{p}(U \cap V) \xrightarrow{\alpha} H_{p}(U) \oplus H_{p}(V) H_{p}\left(S^{1} \times X\right) \xrightarrow{\delta} H_{p-1}(U \cap V) \xrightarrow{\alpha} H_{p-1}(U) \oplus H_{p-1}(V)
$$

we get a short exact sequence

$$
\left(H_{p}(U) \oplus H_{p}(V)\right) / \operatorname{img}\left(\alpha_{p}\right) \rightarrow H_{p}\left(S^{1} \times X\right) \rightarrow \operatorname{ker}\left(\alpha_{p-1}\right)[2]
$$

Part (d) gives an isomorphism $\left(H_{p}(U) \oplus H_{p}(V)\right) / \operatorname{img}\left(\alpha_{p}\right) \simeq H_{p}(X)$ [1]. Part (c) gives an isomorphism $\operatorname{ker}\left(\alpha_{p-1}\right) \simeq H_{p-1}(X)[1]$. We therefore have a short exact sequence

$$
H_{p}(X) \rightarrow H_{p}\left(S^{1} \times X\right) \rightarrow H_{p-1}(X)
$$

as claimed.

