Algebraic Topology

- (1) For $n \ge 3$, we put $X_n = \mathbb{R}^2 \setminus \{(1,0), (2,0), \dots, (n,0)\}.$
 - (a) Define the following terms: topology, topological space, continuous map, homeomorphism. (7 marks)
 - (b) Find a space Y_n consisting of a finite number of straight line segments that is homotopy equivalent to X_n . Give a brief justification for the claim that Y_n is homotopy equivalent to X_n . (6 marks)
 - (c) Prove that X_n is not homeomorphic to Y_n . (3 marks)
 - (d) Prove that X_n is not homotopy equivalent to S^m for any m. (4 marks)
 - (e) Find contractible open sets $U_n, V_n \subseteq \mathbb{C}$ such that $X_n = U_n \cup V_n$. Give a careful proof that U_n and V_n are contractible. (5 marks)

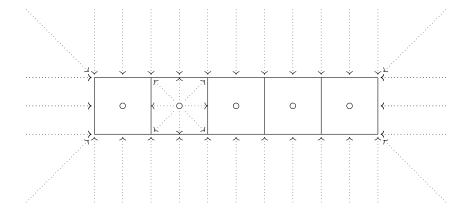
Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not required.

Solution:

- (a) A topology on a set X is a family τ of subsets of X (called open sets) [1] such that
 - (1) The empty set and the whole set X are open [1]
 - (2) The union of any family of open sets is open [1]
 - (3) The intersection of any finite list of open sets is open. [1]

A topological space is a st equipped with a topology. If X and Y are topological spaces, a continuous map from X to Y is a function $f: X \to Y$ such that for every open set $V \subseteq Y$, the preimage $f^{-1}(V)$ is open in X [2]. A homeomorphism from X to Y is a bijective map $f: X \to Y$ with the property that both $f: X \to Y$ and $f^{-1}: Y \to X$ are continuous [1].

(b) We define Y_n to be the union of line segments from $\left[\frac{1}{2}, n+\frac{1}{2}\right] \times \left\{\pm\frac{1}{2}\right\}$ and $\left\{i+\frac{1}{2}\right\} \times \left[-\frac{1}{2}, \frac{1}{2}\right]$ for $0 \le i \le n$ [3]:



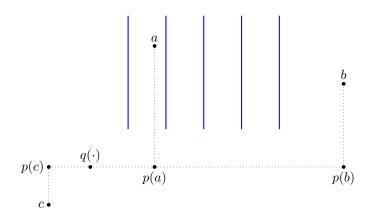
Let $i: Y_n \to X_n$ be the inclusion. The dotted arrows indicate a continuous map $r: X_n \to Y_n$ such that ri = id and ir is homotopic to the identity by a straight line homotopy; this proves that Y_n is homotopy equivalent to X_n . [3]

- (c) The space Y_n is a bounded and closed subspace of \mathbb{R}^2 , so it is compact. The space X_n is unbounded and so is not compact. It follows that X_n cannot be homeomorphic to Y_n . [3]
- (d) It was proved in the notes that

$$H_i(X_n) \simeq \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z}^n & \text{if } i = 1 \\ 0 & \text{otherwise .[2]} \end{cases}$$

In particular, the total rank of all the homology groups of X_n is $n+1 \ge 4$, whereas the total rank of all homology groups of S^m is 2. Homotopy equivalent spaces have isomorphic homology, so X_n cannot be homotopy equivalent to S^m . [2]

(e) Put $A_n = \{1, \ldots, n\} \times [0, \infty)$ and $B_n = \{1, \ldots, n\} \times (-\infty, 0]$. These are closed subsets of \mathbb{R}^2 with $A_n \cap B_n = \{(1,0), \ldots, (n,0)\}$. It follows that the sets $U_n = \mathbb{R}^2 \setminus A_n$ and $V_n = \mathbb{R}^2 \setminus B_n$ are open with $U_n \cup V_n = \mathbb{R}^2 \setminus (A_n \cap B_n) = X_n$ [2]. Define $p, q: U_n \to U_n$ by p(x, y) = (x, -1) and q(x, y) = (0, -1). If $(x, y) \in U_n$ then the line segment from (x, y) to p(x, y) is vertical, and the line segment from p(x, y) to q(x, y) is horizontal, and neither segment touches A_n . Thus, we have straight line homotopies from the identity to p and then from p to the constant map q, proving that U_n is contractible.



Essentially the same argument (using r(x, y) = (x, 1) and s(x, t) = (0, 1)) proves that V_n is contractible. [3]

(2)

- (a) Let X be a topological space. Define the equivalence relation \sim on X such that $\pi_0(X) = X/\sim$, and prove that it is an equivalence relation. (6 marks)
- (b) Let $f: X \to Y$ be a continuous map. Define the induced map $f_*: \pi_0(X) \to \pi_0(Y)$, and prove that it is well-defined. (4 marks)
- (c) Show that if $f, g: X \to Y$ are homotopic maps then $f_* = g_*: \pi_0(X) \to \pi_0(Y)$. (4 marks)
- (d) Let Y and Z be topological spaces. Construct a bijection $\pi_0(Y \times Z) \to \pi_0(Y) \times \pi_0(Z)$, and prove that it is a bijection. (5 marks)
- (e) Define $i: \mathbb{Z} \to \mathbb{R} \setminus \mathbb{Z}$ by $i(n) = n + \frac{1}{2}$. Prove that there do not exist continuous maps $\mathbb{Z} \xrightarrow{f} S^2 \times S^2 \xrightarrow{g} \mathbb{R} \setminus \mathbb{Z}$ such that i is homotopic to $g \circ f$. (6 marks)

Solution:

(a) We write $x \sim y$ iff there is a path in X from x to y, in other words a continuous map $s: I \to X$ such that s(0) = x and s(1) = y [2]. For any $x \in X$ we can define $c_x: I \to X$ by $c_x(t) = x$ for all t; this is a path from x to x, proving that $x \sim x$ [1]. If $x \sim y$ then there is a path s from x to y and we can define a path \overline{s} from y to x by $\overline{s}(t) = s(1-t)$; this shows that $y \sim x$ [1]. If there is also a path r from y to z then we can define a path s * r from x to z by

$$(s*r)(t) = \begin{cases} s(2t) & \text{if } 0 \le t \le 1/2\\ r(2t-1) & \text{if } 1/2 \le t \le 1. \end{cases}$$

This is well-defined because s(1) = y = r(0), and it is continuous by closed patching [1]. This shows that $x \sim z$ [1]. Thus \sim is reflexive, symmetric and transitive and thus is an equivalence relation.

(b) Let c be an element of π₀(X), in other words a path component in X. For any x ∈ c we have a point f(x) ∈ Y, and thus a path-component [f(x)] ∈ π₀(Y). If x' is another point in c then x ~ x' so we can choose a path s from x to x' in X [1]. Thus f ∘ s: I → Y is a path in Y from f(x) to f(x') [1], so f(x) ~ f(x'), so [f(x)] = [f(x')] [1]. We can thus define f_{*}(c) = [f(x)]; this is independent of the choice of x and thus is well-defined [1].

- (c) If $f, g: X \to Y$ are homotopic then we can choose a map $h: I \to X \to Y$ such that h(0, x) = f(x) and h(1, x) = g(x) for all x [1]. If $c \in \pi_0(X)$ we can choose $x \in X$ and note that $f_*(c) = [f(x)]$ and $g_*(c) = [g(x)]$. We can also define a map $s: I \to Y$ by s(t) = h(t, x) [2]. This gives a path from s(0) = f(x) to s(1) = g(x), so [f(x)] = [g(x)], in other words $f_*(c) = g_*(c)$ [1].
- (d) Suppose we have topological spaces Y and Z. Let $p: Y \times Z \to Y$ and $q: Y \times Z \to Z$ be the projection maps, defined by p(y, z) = y and q(y, z) = z [1]. Define $\phi: \pi_0(Y \times Z) \to \pi_0(Y) \times \pi_0(Z)$ by $\phi(c) = (p_*(c), q_*(c))$, so $\phi([y, z]) = ([y], [z])$ [1]. Any element of $\pi_0(Y) \times \pi(0(Z)$ has the form (b, c), where $b \in \pi_0(Y)$ and $c \in \pi_0(Z)$. We can then choose $y \in Y$ and $z \in Z$ such that b = [y] and c = [z]. This gives an element $(y, z) \in Y \times Z$ and a path component $[y, z] \in \pi_0(Y \times Z)$ with $\phi([y, z]) = ([y], [z]) = (b, c)$. This shows that ϕ is surjective [1]. Now suppose we have two path components [y, z] and [y', z'] in $\pi_0(Y \times Z)$ which satisfy $\phi([y, z]) = \phi([y', z'])$. This means that ([y], [z]) = ([y'], [z']), so [y] = [y'] and [z] = [z']. As [y] = [y'] in $\pi_0(Y)$ we can choose a continuous map $v: [0, 1] \to Y$ with v(0) = y and v(1) = y'. Similarly, we can choose a continuous map $w: [0, 1] \to Z$ with w(0) = z and w(1) = z'. Now define $u: [0, 1] \to Y \times Z$ by u(t) = (v(t), w(t)), noting that this is continuous by the universal property of the product topology. We have u(0) = (y, z) and u(1) = (y', z') so [y, z] = [y', z'] in $\pi_0(Y \times Z)$ [2]. This proves that ϕ is also injective, and so is a bijection.
- (e) Suppose (for a contradiction) that *i* is homotopic to $g \circ f$ for some continuous maps $\mathbb{Z} \xrightarrow{f} S^2 \times S^2 \xrightarrow{g} \mathbb{R} \setminus \mathbb{Z}$ [1]. It then follows from (c) that $i_* = g_* \circ f_*$ [1]. However, it is standard that S^2 is path connected [1], or equivalently that $|\pi_0(S^2)| = 1$. It follows using (d) that $S^2 \times S^2$ is also path connected [1], so $f_*([-1]) = f_*([0])$ in $\pi_0(S^2 \times S^2)$, so $g_*(f_*([-1])) = g_*(f_*([0]))$, so $i_*([-1]) = i_*([0])$ in $\pi_0(\mathbb{R} \setminus \mathbb{Z})$ [1]. This means that there is a path from $-\frac{1}{2}$ to $\frac{1}{2}$ in $\mathbb{R} \setminus \mathbb{Z}$, which violates the Intermediate Value Theorem[1].

(3)

- (a) Let $U_* \xrightarrow{i} V_* \xrightarrow{p} W_*$ be a short exact sequence of chain complexes and chain maps. Define what is meant by a *snake* for this sequence. (5 marks)
- (b) Define the homomorphism $\delta: H_n(W) \to H_{n-1}(U)$. You should give a clear statement of the lemmas needed to ensure that your definition is meaningful, but you do not need to prove those lemmas. (4 marks)
- (c) Suppose that $H_k(W)$ is finite for all k, and that $H_k(U) \simeq \mathbb{Z}$ for all k. Prove that $H_k(V)$ is infinite and that the map $p_*: H_k(V) \to H_k(W)$ is surjective. (5 marks)
- (d) Consider the chain complex with $A_k = \mathbb{Z}^3$ for all $k \in \mathbb{Z}$ and d(x, y, z) = (z, 0, 0).
 - (i) Find the homology of A_* . (2 marks)
 - (ii) Show that the formula m(x, y, z) = (0, y, 0) defines a chain map $m: A_* \to A_*$ (2 marks)
 - (iii) Show that m is chain homotopic to the identity. (3 marks)
 - (iv) Construct a chain complex A'_* where the differential is zero, and a chain homotopy equivalence from A'_* to A_* . (4 marks)

Solution:

(a) A snake is a list (c, w, v, u, a) where

$$-c \in H_k(W)$$
 [1]

- $-w \in Z_k(W)$ is a cycle with c = [w] [1]
- $-v \in V_k$ satisfies p(v) = w [1]
- $u \in Z_{k-1}(U)$ satisfies i(u) = d(v) [1]
- $-a = [u] \in H_{k-1}(U).$ [1]
- (b) It can be shown that
 - (1) For any $c \in H_k(W)$, there exists a snake (c, w, v, u, a) starting with c. [1]
 - (2) If we have snakes (c, w, v, u, a) and (c, w', v', u', a') both starting with c, then a = a'. [1]

We can therefore define δ : $H_k(W)$ by $\delta(c) = a$, for any snake (c, w, v, u, a) that starts with c. [2]

(c) The Snake Lemma gives exact sequences

$$H_{k+1}(W) \xrightarrow{\delta} H_k(U) \xrightarrow{i_*} H_k(V) \xrightarrow{p_*} H_k(W) \xrightarrow{\delta} H_{k-1}(U)$$

For every element c in the finite group $H_k(W)$ we know that c has finite order, so the element $\delta(c) \in H_{k-1}(U)$ also has finite order. However, $H_{k-1}(U) \simeq \mathbb{Z}$ so the only element of finite order in this group is zero. It follows that all the maps δ are zero [1], and thus that the sequence

$$H_k(U) \xrightarrow{i_*} H_k(V) \xrightarrow{p_*} H_k(W)$$

is short exact [1]. This means that p_* is surjective [1], as required. It also means that i_* is injective and $H_k(U) \simeq \mathbb{Z}$ is infinite so $H_k(V)$ must also be infinite [1].

(d) (i) We have

$$B_k(A) = \operatorname{img}(d) = \mathbb{Z} \oplus 0 \oplus 0$$

$$Z_k(A) = \{(x, y, z) \mid (z, 0, 0) = (0, 0, 0)\} = \{(x, y, 0) \mid x, y \in \mathbb{Z}\}$$

$$= \mathbb{Z} \oplus \mathbb{Z} \oplus 0$$

$$H_k(A) = (\mathbb{Z} \oplus \mathbb{Z} \oplus 0) / (\mathbb{Z} \oplus 0 \oplus 0) \simeq \mathbb{Z}.$$

Explicitly, we have $H_k(A) = \mathbb{Z}.h$, where h = [(0, 1, 0)] [2].

- (ii) From the formulae d(x, y, z) = (z, 0, 0) and m(x, y, z) = (0, y, 0) we get d(m(x, y, z)) = d(0, y, 0) = (0, 0, 0)and m(d(x, y, z)) = m(z, 0, 0) = (0, 0, 0). This shows that dm = md, so m is a chain map [2].
- (iii) Now define s(x, y, z) = (0, 0, x) [1]. This has d(s(x, y, z)) = d(0, 0, x) = (x, 0, 0) and s(d(x, y, z)) = s(z, 0, 0) = (0, 0, z) so

$$(ds + sd)(x, y, z) = (x, 0, z) = (id - m)(x, y, z),$$

so s gives a chain homotopy between id and m [2].

- (iv) Now define $A'_k = \mathbb{Z}$, with $d' = 0: A'_k \to A'_{k-1}$ [1]. Define $i: A'_k \to A_k$ by i(y) = (0, y, 0) [1] and $r: A_k \to A'_k$ by r(x, y, z) = y [1]. These are chain maps with r id and ir = m so ir is chain homotopic to id [1]. This means that i is a chain homotopy equivalence from A'_* to A_* .
- (4) For each of the following, either give an example (with justification) or prove that no example can exist.
 - (a) A continuous map $f: X \to Y$ such that $f_*: H_1(X) \to H_1(Y)$ is injective but not surjective, and $f_*: H_{10}(X) \to H_{10}(Y)$ is surjective but not injective. (5 marks)
 - (b) A path connected space X that is homotopy equivalent to $X \times X$. (5 marks)
 - (c) A path connected space X that is not homotopy equivalent to $X \times X$. (5 marks)
 - (d) A space X and a point $x \in X$ such that X is not contractible but $X \setminus \{x\}$ is contractible. (5 marks)
 - (e) A subspace $X \subseteq \mathbb{R}^2$ that is homotopy equivalent to $S^4 \setminus S^2$. (5 marks)

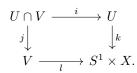
Solution:

- (a) Let $f: S^{10} \to S^1$ be the constant map sending all of S^{10} to the point $e_0 \in S^1$ [3]. Then $f_*: H_1(S^{10}) \to H_1(S^1)$ is the inclusion $0 \to \mathbb{Z}$, which is injective but not surjective [1]. Moreover, $f_*: H_{10}(S^{10}) \to H_{10}(S^1)$ is the zero homomorphism $\mathbb{Z} \to 0$, which is surjective but not injective [1].
- (b) The spaces I = [0, 1] and $I \times I$ are both homotopy equivalent to a point, and thus to each other [5]. (For a more degenerate example, one could just take X to be a point.)
- (c) The space S^1 is not homotopy equivalent to $S^1 \times S^1$ [3] (because $H_1(S^1) = \mathbb{Z}$ is not isomorphic to $H_1(S^1 \times S^1) = \mathbb{Z} \times \mathbb{Z}$) [2].
- (d) S^1 [3] is not contractible (because $H_1(S^1) = \mathbb{Z}$ is nontrivial [1]) but $S^1 \setminus \{1\}$ is homeomorphic to \mathbb{R} and thus is contractible [1].

- (e) In general, $S^n \setminus S^m$ is homotopy equivalent to S^{n-m-1} [2]. In particular, the space $S^4 \setminus S^2$ is homotopy equivalent to S^1 , which is a subset of \mathbb{R}^2 [3].
- (5) Let X be a path connected space, and put

$$U = \{(t, x) \in S^1 \times X \mid t \neq (0, 1)\}$$
$$V = \{(t, x) \in S^1 \times X \mid t \neq (0, -1)\}.$$

We use the usual notation for inclusion maps:



- (a) Define maps $f, g: X \to U \cap V$ such that f gives a homotopy equivalence from X to one path component of $U \cap V$, and g gives a homotopy equivalence from X to the other path component of $U \cap V$. (4 marks)
- (b) Prove that the map $i' = i \circ f : X \to U$ is homotopic to $i \circ g$, and also that i' is a homotopy equivalence. (You can then assume without further argument that the map $j' = j \circ f : X \to V$ is homotopic to $j \circ g$, and that j' is a homotopy equivalence.) (6 marks)
- (c) Deduce descriptions of the homology groups $H_p(U \cap V)$, $H_p(U)$ and $H_p(V)$, and the homomorphism

$$\alpha = \begin{bmatrix} i_* \\ -j_* \end{bmatrix} \colon H_p(U \cap V) \to H_p(U) \oplus H_p(V)$$

Find the kernel and image of α . (8 marks)

- (d) Show that every element of $H_p(U) \oplus H_p(V)$ can be written as $(i'_*(a), 0) + \alpha(b)$ for a unique pair $(a, b) \in H_p(X)^2$. (3 marks)
- (e) Deduce that there is a short exact sequence $H_p(X) \to H_p(S^1 \times X) \to H_{p-1}(X)$. (4 marks)

Solution:

- (a) The path components of $S^1 \setminus \{(0,1), (0,-1)\}$ are $A = [(-1,0)] = \{(x,y) \in S^1 \mid x < 0\}$ and $B = [(+1,0)] = \{(x,y) \in S^1 \mid x > 0\}$, so the path components of $U \cap V$ are $A \times X$ and $B \times X$ [2]. Here A is contractible and contains (-1,0) so the map f(x) = ((-1,0), x) gives a homotopy equivalence from X to $A \times X$. Similarly, the map g(x) = ((1,0), x) gives a homotopy equivalence from X to $B \times X$ [2].
- (b) We can define $h(t,x) = ((-\cos(\pi t), -\sin(\pi t)), x)$ for $0 \le t \le 1$. As $(-\cos(\pi t), -\sin(\pi t))$ lies on the bottom half of S^1 , this does not pass through $(0,1) \times X$ and so gives a continuous map $[0,1] \times X \to U$. It satisfies h(0,x) = ((-1,0), x) = i(f(x)) = i'(x) and h(1,x) = ((1,0), x) = i(g(x)), so this gives a homotopy between i' and $i \circ g$ [3]. We can also define $r: U \to X$ by r(t,x) = x. Then $r \circ i' = id$, and contractibility of $S^1 \setminus \{(0,1)\}$ ensures that i'r is homotopic to the identity [3].
- (c) As $f: X \to A \times X$ and $g: X \to B \times X$ are homotopy equivalences, we see that every element of $H_p(U \cap V)$ can be written as $f_*(a) + g_*(b)$ for a unique pair $(a, b) \in H_p(X)^2$. [2] Similarly, any element of $H_p(U) \oplus H_p(V)$ can be written as $(i'_*(a), j'_*(b))$ for a unique pair $(a, b) \in H_p(X)^2$ [2]. As $i_*f_* = i_*g_* = i'_*$ and $j_*f_* = j_*g_* = j'_*$ we see that

$$\alpha(f_*(a) + g_*(b)) = (i'_*(a+b), -j'_*(a+b)[2])$$

This means that

$$\ker(\alpha) = \{f_*(a) - g_*(a) \mid a \in H_p(X)\} \simeq H_p(X)[\mathbf{1}]$$
$$\operatorname{img}(\alpha) = \{(i'_*(c), -j'_*(c)) \mid c \in H_p(X)\} \simeq H_p(X)[\mathbf{1}].$$

(d) We now see that every element $(i'_*(a), j'_*(b)) \in H_p(U) \oplus H_p(V)$ can be written as $(i'_*(a+b), 0) + (i'_*(-b), j'_*(-b))$ with the second term lying in $img(\alpha)$, and this decomposition is unique [3].

(e) From the exact sequence

$$H_p(U \cap V) \xrightarrow{\alpha} H_p(U) \oplus H_p(V) H_p(S^1 \times X) \xrightarrow{\delta} H_{p-1}(U \cap V) \xrightarrow{\alpha} H_{p-1}(U) \oplus H_{p-1}(V)$$

we get a short exact sequence

$$(H_p(U) \oplus H_p(V)) / \operatorname{img}(\alpha_p) \to H_p(S^1 \times X) \to \ker(\alpha_{p-1})$$
[2]

Part (d) gives an isomorphism $(H_p(U) \oplus H_p(V))/\operatorname{img}(\alpha_p) \simeq H_p(X)$ [1]. Part (c) gives an isomorphism $\ker(\alpha_{p-1}) \simeq H_{p-1}(X)$ [1]. We therefore have a short exact sequence

$$H_p(X) \to H_p(S^1 \times X) \to H_{p-1}(X)$$

as claimed.