
Algebraic Topology

(1) For n ≥ 3, we put Xn = R2 \ {(1, 0), (2, 0), . . . , (n, 0)}.

(a) Define the following terms: topology, topological space, continuous map, homeomorphism. (7 marks)

(b) Find a space Yn consisting of a finite number of straight line segments that is homotopy equivalent to Xn. Give
a brief justification for the claim that Yn is homotopy equivalent to Xn. (6 marks)

(c) Prove that Xn is not homeomorphic to Yn. (3 marks)

(d) Prove that Xn is not homotopy equivalent to Sm for any m. (4 marks)

(e) Find contractible open sets Un, Vn ⊆ C such that Xn = Un ∪ Vn. Give a careful proof that Un and Vn are
contractible. (5 marks)

Claims about the homology of particular spaces should be stated clearly and justified briefly, but details are not
required.

Solution:

(a) A topology on a set X is a family τ of subsets of X (called open sets) [1]such that

(1) The empty set and the whole set X are open [1]

(2) The union of any family of open sets is open [1]

(3) The intersection of any finite list of open sets is open. [1]

A topological space is a st equipped with a topology. If X and Y are topological spaces, a continuous map from
X to Y is a function f : X → Y such that for every open set V ⊆ Y , the preimage f−1(V ) is open in X [2].
A homeomorphism from X to Y is a bijective map f : X → Y with the property that both f : X → Y and
f−1 : Y → X are continuous [1].

(b) We define Yn to be the union of line segments from [12 , n+ 1
2 ]× {± 1

2} and {i+ 1
2} × [− 1

2 ,
1
2 ] for 0 ≤ i ≤ n [3]:

Let i : Yn → Xn be the inclusion. The dotted arrows indicate a continuous map r : Xn → Yn such that ri = id
and ir is homotopic to the identity by a straight line homotopy; this proves that Yn is homotopy equivalent to
Xn. [3]

(c) The space Yn is a bounded and closed subspace of R2, so it is compact. The space Xn is unbounded and so is
not compact. It follows that Xn cannot be homeomorphic to Yn. [3]

(d) It was proved in the notes that

Hi(Xn) ≃


Z if i = 0

Zn if i = 1

0 otherwise .[2]
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In particular, the total rank of all the homology groups of Xn is n+1 ≥ 4, whereas the total rank of all homology
groups of Sm is 2. Homotopy equivalent spaces have isomorphic homology, so Xn cannot be homotopy equivalent
to Sm. [2]

(e) Put An = {1, . . . , n} × [0,∞) and Bn = {1, . . . , n} × (−∞, 0]. These are closed subsets of R2 with An ∩ Bn =
{(1, 0), . . . , (n, 0)}. It follows that the sets Un = R2\An and Vn = R2\Bn are open with Un∪Vn = R2\(An∩Bn) =
Xn [2]. Define p, q : Un → Un by p(x, y) = (x,−1) and q(x, y) = (0,−1). If (x, y) ∈ Un then the line segment
from (x, y) to p(x, y) is vertical, and the line segment from p(x, y) to q(x, y) is horizontal, and neither segment
touches An. Thus, we have straight line homotopies from the identity to p and then from p to the constant map
q, proving that Un is contractible.

a

b

c

p(a) p(b)
p(c)

q(·)

Essentially the same argument (using r(x, y) = (x, 1) and s(x, t) = (0, 1)) proves that Vn is contractible. [3]

(2)

(a) Let X be a topological space. Define the equivalence relation ∼ on X such that π0(X) = X/ ∼, and prove that
it is an equivalence relation. (6 marks)

(b) Let f : X −→ Y be a continuous map. Define the induced map f∗ : π0(X) −→ π0(Y ), and prove that it is well-
defined. (4 marks)

(c) Show that if f, g : X −→ Y are homotopic maps then f∗ = g∗ : π0(X) −→ π0(Y ). (4 marks)

(d) Let Y and Z be topological spaces. Construct a bijection π0(Y × Z) → π0(Y ) × π0(Z), and prove that it is a
bijection. (5 marks)

(e) Define i : Z → R \Z by i(n) = n+ 1
2 . Prove that there do not exist continuous maps Z f−→ S2 ×S2 g−→ R \Z such

that i is homotopic to g ◦ f . (6 marks)

Solution:

(a) We write x ∼ y iff there is a path in X from x to y, in other words a continuous map s : I −→ X such that
s(0) = x and s(1) = y [2]. For any x ∈ X we can define cx : I −→ X by cx(t) = x for all t; this is a path from x
to x, proving that x ∼ x [1]. If x ∼ y then there is a path s from x to y and we can define a path s from y to
x by s(t) = s(1 − t); this shows that y ∼ x [1]. If there is also a path r from y to z then we can define a path
s ∗ r from x to z by

(s ∗ r)(t) =

{
s(2t) if 0 ≤ t ≤ 1/2

r(2t− 1) if 1/2 ≤ t ≤ 1.

This is well-defined because s(1) = y = r(0), and it is continuous by closed patching [1]. This shows that x ∼ z
[1]. Thus ∼ is reflexive, symmetric and transitive and thus is an equivalence relation.

(b) Let c be an element of π0(X), in other words a path component in X. For any x ∈ c we have a point f(x) ∈ Y ,
and thus a path-component [f(x)] ∈ π0(Y ). If x′ is another point in c then x ∼ x′ so we can choose a path s from
x to x′ in X [1]. Thus f ◦ s : I −→ Y is a path in Y from f(x) to f(x′) [1], so f(x) ∼ f(x′), so [f(x)] = [f(x′)]
[1]. We can thus define f∗(c) = [f(x)]; this is independent of the choice of x and thus is well-defined [1].
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(c) If f, g : X −→ Y are homotopic then we can chooose a map h : I −→ X −→ Y such that h(0, x) = f(x) and
h(1, x) = g(x) for all x [1]. If c ∈ π0(X) we can choose x ∈ X and note that f∗(c) = [f(x)] and g∗(c) = [g(x)].
We can also define a map s : I −→ Y by s(t) = h(t, x) [2]. This gives a path from s(0) = f(x) to s(1) = g(x), so
[f(x)] = [g(x)], in other words f∗(c) = g∗(c) [1].

(d) Suppose we have topological spaces Y and Z. Let p : Y × Z → Y and q : Y × Z → Z be the projection maps,
defined by p(y, z) = y and q(y, z) = z [1]. Define ϕ : π0(Y × Z) → π0(Y ) × π0(Z) by ϕ(c) = (p∗(c), q∗(c)), so
ϕ([y, z]) = ([y], [z]) [1]. Any element of π0(Y )× π(0(Z) has the form (b, c), where b ∈ π0(Y ) and c ∈ π0(Z). We
can then choose y ∈ Y and z ∈ Z such that b = [y] and c = [z]. This gives an element (y, z) ∈ Y × Z and a
path component [y, z] ∈ π0(Y × Z) with ϕ([y, z]) = ([y], [z]) = (b, c). This shows that ϕ is surjective [1]. Now
suppose we have two path components [y, z] and [y′, z′] in π0(Y × Z) which satisfy ϕ([y, z]) = ϕ([y′, z′]). This
means that ([y], [z]) = ([y′], [z′]), so [y] = [y′] and [z] = [z′]. As [y] = [y′] in π0(Y ) we can choose a continuous
map v : [0, 1] → Y with v(0) = y and v(1) = y′. Similarly, we can choose a continuous map w : [0, 1] → Z with
w(0) = z and w(1) = z′. Now define u : [0, 1] → Y × Z by u(t) = (v(t), w(t)), noting that this is continuous by
the universal property of the product topology. We have u(0) = (y, z) and u(1) = (y′, z′) so [y, z] = [y′, z′] in
π0(Y × Z)[2]. This proves that ϕ is also injective, and so is a bijection.

(e) Suppose (for a contradiction) that i is homotopic to g ◦ f for some continuous maps Z f−→ S2 × S2 g−→ R \ Z
[1]. It then follows from (c) that i∗ = g∗ ◦ f∗ [1]. However, it is standard that S2 is path connected [1], or
equivalently that |π0(S

2)| = 1. It follows using (d) that S2 ×S2 is also path connected [1], so f∗([−1]) = f∗([0])
in π0(S

2 × S2), so g∗(f∗([−1])) = g∗(f∗([0])), so i∗([−1]) = i∗([0]) in π0(R \ Z) [1]. This means that there is a
path from − 1

2 to 1
2 in R \ Z, which violates the Intermediate Value Theorem[1].

(3)

(a) Let U∗
i−→ V∗

p−→ W∗ be a short exact sequence of chain complexes and chain maps. Define what is meant by a
snake for this sequence. (5 marks)

(b) Define the homomorphism δ : Hn(W ) → Hn−1(U). You should give a clear statement of the lemmas needed to
ensure that your definition is meaningful, but you do not need to prove those lemmas. (4 marks)

(c) Suppose that Hk(W ) is finite for all k, and that Hk(U) ≃ Z for all k. Prove that Hk(V ) is infinite and that the
map p∗ : Hk(V ) → Hk(W ) is surjective. (5 marks)

(d) Consider the chain complex with Ak = Z3 for all k ∈ Z and d(x, y, z) = (z, 0, 0).

(i) Find the homology of A∗. (2 marks)

(ii) Show that the formula m(x, y, z) = (0, y, 0) defines a chain map m : A∗ → A∗ (2 marks)

(iii) Show that m is chain homotopic to the identity. (3 marks)

(iv) Construct a chain complex A′
∗ where the differential is zero, and a chain homotopy equivalence from A′

∗ to
A∗. (4 marks)

Solution:

(a) A snake is a list (c, w, v, u, a) where

– c ∈ Hk(W ) [1]

– w ∈ Zk(W ) is a cycle with c = [w] [1]

– v ∈ Vk satisfies p(v) = w [1]

– u ∈ Zk−1(U) satisfies i(u) = d(v) [1]

– a = [u] ∈ Hk−1(U). [1]

(b) It can be shown that

(1) For any c ∈ Hk(W ), there exists a snake (c, w, v, u, a) starting with c. [1]

(2) If we have snakes (c, w, v, u, a) and (c, w′, v′, u′, a′) both starting with c, then a = a′. [1]

We can therefore define δ : Hk(W ) by δ(c) = a, for any snake (c, w, v, u, a) that starts with c. [2]
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(c) The Snake Lemma gives exact sequences

Hk+1(W )
δ−→ Hk(U)

i∗−→ Hk(V )
p∗−→ Hk(W )

δ−→ Hk−1(U)[1]

For every element c in the finite group Hk(W ) we know that c has finite order, so the element δ(c) ∈ Hk−1(U)
also has finite order. However, Hk−1(U) ≃ Z so the only element of finite order in this group is zero. It follows
that all the maps δ are zero [1], and thus that the sequence

Hk(U)
i∗−→ Hk(V )

p∗−→ Hk(W )

is short exact [1]. This means that p∗ is surjective [1], as required. It also means that i∗ is injective and
Hk(U) ≃ Z is infinite so Hk(V ) must also be infinite [1].

(d) (i) We have

Bk(A) = img(d) = Z⊕ 0⊕ 0

Zk(A) = {(x, y, z) | (z, 0, 0) = (0, 0, 0)} = {(x, y, 0) | x, y ∈ Z}
= Z⊕ Z⊕ 0

Hk(A) = (Z⊕ Z⊕ 0)/(Z⊕ 0⊕ 0) ≃ Z.

Explicitly, we have Hk(A) = Z.h, where h = [(0, 1, 0)] [2].

(ii) From the formulae d(x, y, z) = (z, 0, 0) and m(x, y, z) = (0, y, 0) we get d(m(x, y, z)) = d(0, y, 0) = (0, 0, 0)
and m(d(x, y, z)) = m(z, 0, 0) = (0, 0, 0). This shows that dm = md, so m is a chain map [2].

(iii) Now define s(x, y, z) = (0, 0, x) [1]. This has d(s(x, y, z)) = d(0, 0, x) = (x, 0, 0) and s(d(x, y, z)) =
s(z, 0, 0) = (0, 0, z) so

(ds+ sd)(x, y, z) = (x, 0, z) = (id−m)(x, y, z),

so s gives a chain homotopy between id and m [2].

(iv) Now define A′
k = Z, with d′ = 0: A′

k → A′
k−1 [1]. Define i : A′

k → Ak by i(y) = (0, y, 0) [1]and r : Ak → A′
k

by r(x, y, z) = y [1]. These are chain maps with r id and ir = m so ir is chain homotopic to id [1]. This
means that i is a chain homotopy equivalence from A′

∗ to A∗.

(4) For each of the following, either give an example (with justification) or prove that no example can exist.

(a) A continuous map f : X → Y such that f∗ : H1(X) → H1(Y ) is injective but not surjective, and f∗ : H10(X) →
H10(Y ) is surjective but not injective. (5 marks)

(b) A path connected space X that is homotopy equivalent to X ×X. (5 marks)

(c) A path connected space X that is not homotopy equivalent to X ×X. (5 marks)

(d) A space X and a point x ∈ X such that X is not contractible but X \ {x} is contractible. (5 marks)

(e) A subspace X ⊆ R2 that is homotopy equivalent to S4 \ S2. (5 marks)

Solution:

(a) Let f : S10 → S1 be the constant map sending all of S10 to the point e0 ∈ S1 [3]. Then f∗ : H1(S
10) → H1(S

1)
is the inclusion 0 → Z, which is injective but not surjective [1]. Moreover, f∗ : H10(S

10) → H10(S
1) is the zero

homomorphism Z → 0, which is surjective but not injective [1].

(b) The spaces I = [0, 1] and I× I are both homotopy equivalent to a point, and thus to each other [5]. (For a more
degenerate example, one could just take X to be a point.)

(c) The space S1 is not homotopy equivalent to S1×S1 [3] (because H1(S
1) = Z is not isomorphic to H1(S

1×S1) =
Z× Z) [2].

(d) S1 [3] is not contractible (because H1(S
1) = Z is nontrivial [1]) but S1 \ {1} is homeomorphic to R and thus is

contractible [1].
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(e) In general, Sn\Sm is homotopy equivalent to Sn−m−1 [2]. In particular, the space S4\S2 is homotopy equivalent
to S1, which is a subset of R2 [3].

(5) Let X be a path connected space, and put

U = {(t, x) ∈ S1 ×X | t ̸= (0, 1)}
V = {(t, x) ∈ S1 ×X | t ̸= (0,−1)}.

We use the usual notation for inclusion maps:

U ∩ V U

V S1 ×X.

i

j k

l

(a) Define maps f, g : X → U ∩ V such that f gives a homotopy equivalence from X to one path component of
U ∩ V , and g gives a homotopy equivalence from X to the other path component of U ∩ V . (4 marks)

(b) Prove that the map i′ = i ◦ f : X → U is homotopic to i ◦ g, and also that i′ is a homotopy equivalence. (You
can then assume without further argument that the map j′ = j ◦ f : X → V is homotopic to j ◦ g, and that j′ is
a homotopy equivalence.) (6 marks)

(c) Deduce descriptions of the homology groups Hp(U ∩ V ), Hp(U) and Hp(V ), and the homomorphism

α =

[
i∗
−j∗

]
: Hp(U ∩ V ) → Hp(U)⊕Hp(V ).

Find the kernel and image of α. (8 marks)

(d) Show that every element of Hp(U)⊕Hp(V ) can be written as (i′∗(a), 0)+α(b) for a unique pair (a, b) ∈ Hp(X)2.
(3 marks)

(e) Deduce that there is a short exact sequence Hp(X) → Hp(S
1 ×X) → Hp−1(X). (4 marks)

Solution:

(a) The path components of S1 \ {(0, 1), (0,−1)} are A = [(−1, 0)] = {(x, y) ∈ S1 | x < 0} and B = [(+1, 0)] =
{(x, y) ∈ S1 | x > 0}, so the path components of U ∩ V are A ×X and B ×X [2]. Here A is contractible and
contains (−1, 0) so the map f(x) = ((−1, 0), x) gives a homotopy equivalence from X to A ×X. Similarly, the
map g(x) = ((1, 0), x) gives a homotopy equivalence from X to B ×X [2].

(b) We can define h(t, x) = ((− cos(πt),− sin(πt)), x) for 0 ≤ t ≤ 1. As (− cos(πt),− sin(πt)) lies on the bottom
half of S1, this does not pass through (0, 1) × X and so gives a continuous map [0, 1] × X → U . It satisfies
h(0, x) = ((−1, 0), x) = i(f(x)) = i′(x) and h(1, x) = ((1, 0), x) = i(g(x)), so this gives a homotopy between i′

and i ◦ g [3]. We can also define r : U → X by r(t, x) = x. Then r ◦ i′ = id, and contractibility of S1 \ {(0, 1)}
ensures that i′r is homotopic to the identity [3].

(c) As f : X → A×X and g : X → B ×X are homotopy equivalences, we see that every element of Hp(U ∩ V ) can
be written as f∗(a) + g∗(b) for a unique pair (a, b) ∈ Hp(X)2. [2] Similarly, any element of Hp(U)⊕Hp(V ) can
be written as (i′∗(a), j

′
∗(b)) for a unique pair (a, b) ∈ Hp(X)2[2]. As i∗f∗ = i∗g∗ = i′∗ and j∗f∗ = j∗g∗ = j′∗ we

see that
α(f∗(a) + g∗(b)) = (i′∗(a+ b), −j′∗(a+ b)[2].)

This means that

ker(α) = {f∗(a)− g∗(a) | a ∈ Hp(X)} ≃ Hp(X)[1]

img(α) = {(i′∗(c),−j′∗(c)) | c ∈ Hp(X)} ≃ Hp(X)[1].

(d) We now see that every element (i′∗(a), j
′
∗(b)) ∈ Hp(U)⊕Hp(V ) can be written as (i′∗(a+ b), 0)+ (i′∗(−b), j′∗(−b))

with the second term lying in img(α), and this decomposition is unique [3].
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(e) From the exact sequence

Hp(U ∩ V )
α−→ Hp(U)⊕Hp(V )Hp(S

1 ×X)
δ−→ Hp−1(U ∩ V )

α−→ Hp−1(U)⊕Hp−1(V )

we get a short exact sequence

(Hp(U)⊕Hp(V ))/ img(αp) → Hp(S
1 ×X) −→ ker(αp−1)[2]

Part (d) gives an isomorphism (Hp(U) ⊕ Hp(V ))/ img(αp) ≃ Hp(X) [1]. Part (c) gives an isomorphism
ker(αp−1) ≃ Hp−1(X) [1]. We therefore have a short exact sequence

Hp(X) → Hp(S
1 ×X) → Hp−1(X)

as claimed.
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