MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 10

Please hand in Exercises 2 and 3 by the Wednesday lecture of Week 4. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Exercise 1. Let U be an abelian group. Consider the chain complex

$$A_* = (U \stackrel{0}{\leftarrow} U \stackrel{1}{\leftarrow} U \stackrel{0}{\leftarrow} U \stackrel{1}{\leftarrow} U \stackrel{\cdots}{\leftarrow})$$

(with the first group in degree zero).

- (a) What is H_*A ?
- (b) Define $f: A_* \to A_*$ by $f_0 = 1$ and $f_k = 0$ for all $k \neq 0$. Prove that f is chain-homotopic to the identity.

Exercise 2. Consider the chain complex U_* where $U_n = \mathbb{Z}/100$ and $d_n(a) = 10a$ for all $n \in \mathbb{Z}$. Prove that $H_*(U) = 0$ but that the identity map id: $U_* \to U_*$ is not chain homotopic to zero.

Exercise 3. Let U_* be a chain complex in which all the groups U_k are finite-dimensional vector spaces over \mathbb{Q} , and all the differentials $d: U_k \to U_{k-1}$ are \mathbb{Q} -linear.

- (a) For each n, choose a basis $b_{n,1}, \ldots, b_{n,p(n)}$ for $B_n(U)$.
- (b) Explain why we can choose elements $v_{n+1,1}, \ldots, v_{n+1,p(n)} \in U_{n+1}$ such that $d(v_{n+1,k}) = b_{n,k}$ for all k.
- (c) Explain why we can choose additional elements $h_{n,1}, \ldots, h_{n,q(n)} \in Z_n(U)$ such that $b_{n,1}, \ldots, b_{n,p(n)}, h_{n,1}, \ldots, h_{n,q(n)}$ is a basis for $Z_n(U)$. Describe $H_n(U)$ in terms of this basis.
- (d) Explain why the list $v_{n,1}, \ldots, v_{n,p(n-1)}, b_{n,1}, \ldots, b_{n,p(n)}, h_{n,1}, \ldots, h_{n,q(n)}$ is a basis for U_n .
- (e) Put $V_n = \text{span}(h_{n,1}, \dots, h_{n,q(n)})$, and consider this as a chain complex with d = 0. Construct an injective chain map $i: V_* \to U_*$ and a surjective chain map $r: U_* \to V_*$.
- (f) Define $s: U_n \to U_{n+1}$ by $s(b_{n,i}) = v_{n+1,i}$ and $s(v_{n,i}) = 0$ and $s(h_{n,i}) = 0$. Use this to show that U_* is chain homotopy equivalent to V_* .

Exercise 4. Consider the following matrices:

	1	-1	0		[1	1	1	[1	0	0		0	0	0
D =	0	1	$^{-1}$	T =	1	1	1	U = 0	0	0	0	V =	0	1	1
	$^{-1}$	0	1		1	1	1	Ĺ	0	0	0		0	0	1

Multiplication by D gives a homomorphism $\mathbb{Z}^3 \to \mathbb{Z}^3$, and similarly for the other three matrices.

(a) Show that the sequence

$$A_* = (\mathbb{Z}^3 \xleftarrow{D} \mathbb{Z}^3 \xleftarrow{T} \mathbb{Z}^3 \xleftarrow{D} \mathbb{Z}^3 \xleftarrow{T} \mathbb{Z}^3 \xleftarrow{T} \cdots)$$

is a chain complex.

- (b) Find UT + DV and TU + VD.
- (c) Use (b) to construct a chain homotopy between certain maps $A_* \to A_*$.
- (d) Use this to calculate H_*A .