MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 10

Please hand in Exercises 2 and 3 by the Wednesday lecture of Week 4. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Exercise 1. Let U be an abelian group. Consider the chain complex

$$
A_{*}=(U \stackrel{0}{\leftarrow} U \stackrel{1}{\leftarrow} U \stackrel{0}{\leftarrow} U \stackrel{1}{\leftarrow} U \stackrel{\cdots}{\leftarrow})
$$

(with the first group in degree zero).
(a) What is $H_{*} A$?
(b) Define $f: A_{*} \rightarrow A_{*}$ by $f_{0}=1$ and $f_{k}=0$ for all $k \neq 0$. Prove that f is chain-homotopic to the identity.

Exercise 2. Consider the chain complex U_{*} where $U_{n}=\mathbb{Z} / 100$ and $d_{n}(a)=10 a$ for all $n \in \mathbb{Z}$. Prove that $H_{*}(U)=0$ but that that the identity map id: $U_{*} \rightarrow U_{*}$ is not chain homotopic to zero.

Exercise 3. Let U_{*} be a chain complex in which all the groups U_{k} are finite-dimensional vector spaces over \mathbb{Q}, and all the differentials $d: U_{k} \rightarrow U_{k-1}$ are \mathbb{Q}-linear.
(a) For each n, choose a basis $b_{n, 1}, \ldots, b_{n, p(n)}$ for $B_{n}(U)$.
(b) Explain why we can choose elements $v_{n+1,1}, \ldots, v_{n+1, p(n)} \in U_{n+1}$ such that $d\left(v_{n+1, k}\right)=b_{n, k}$ for all k.
(c) Explain why we can choose additional elements $h_{n, 1}, \ldots, h_{n, q(n)} \in Z_{n}(U)$ such that $b_{n, 1}, \ldots, b_{n, p(n)}, h_{n, 1}, \ldots, h_{n, q(n)}$ is a basis for $Z_{n}(U)$. Describe $H_{n}(U)$ in terms of this basis.
(d) Explain why the list $v_{n, 1}, \ldots, v_{n, p(n-1)}, b_{n, 1}, \ldots, b_{n, p(n)}, h_{n, 1}, \ldots, h_{n, q(n)}$ is a basis for U_{n}.
(e) Put $V_{n}=\operatorname{span}\left(h_{n, 1}, \ldots, h_{n, q(n)}\right)$, and consider this as a chain complex with $d=0$. Construct an injective chain map $i: V_{*} \rightarrow U_{*}$ and a surjective chain map $r: U_{*} \rightarrow V_{*}$.
(f) Define $s: U_{n} \rightarrow U_{n+1}$ by $s\left(b_{n, i}\right)=v_{n+1, i}$ and $s\left(v_{n, i}\right)=0$ and $s\left(h_{n, i}\right)=0$. Use this to show that U_{*} is chain homotopy equivalent to V_{*}.

Exercise 4. Consider the following matrices:

$$
D=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right] \quad T=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad V=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Multiplication by D gives a homomorphism $\mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$, and similarly for the other three matrices.
(a) Show that the sequence

$$
A_{*}=\left(\mathbb{Z}^{3} \stackrel{D}{\leftarrow} \mathbb{Z}^{3} \stackrel{T}{\leftarrow} \mathbb{Z}^{3} \longleftarrow \mathbb{Z}^{3} \stackrel{T}{\leftarrow} \mathbb{Z}^{3} \leftarrow \cdots\right)
$$

is a chain complex.
(b) Find $U T+D V$ and $T U+V D$.
(c) Use (b) to construct a chain homotopy between certain maps $A_{*} \rightarrow A_{*}$.
(d) Use this to calculate $H_{*} A$.

