MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 12 - Solutions

Please hand in Exercises 1 and 2 by the Wednesday lecture of Week 6. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Exercise 1. We define groups U_{k}, V_{k} and W_{k} (for all $k \in \mathbb{Z}$) and maps between them as follows:

- U_{k} is a copy of $\mathbb{Z} / 4$ with generator u_{k}, and V_{k} is a copy of $\mathbb{Z} / 16$ with generator v_{k}, and W_{k} is a copy of $\mathbb{Z} / 4$ with generator w_{k}.
- The maps $d: U_{k} \rightarrow U_{k-1}$ and $d: V_{k} \rightarrow V_{k-1}$ and $d: W_{k} \rightarrow W_{k-1}$ are given by $d\left(u_{k}\right)=0$ and $d\left(w_{k}\right)=0$ and $d\left(v_{k}\right)=8 v_{k-1}$.
- The map $i: U_{k} \rightarrow V_{k}$ is given by $i\left(u_{k}\right)=4 v_{k}$.
- The map $p: V_{k} \rightarrow W_{k}$ is given by $p\left(v_{k}\right)=w_{k}$.
(a) Prove that this makes U_{*}, V_{*} and W_{*} into chain complexes.
(b) Prove that i and p are chain maps.
(c) Prove that the sequence $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ is short exact.
(d) Find the homology groups of U_{*}, V_{*} and W_{*}.
(e) Describe the action of the maps i_{*} and p_{*} on these homology groups.
(f) By finding suitable snakes, describe the connecting map $\delta: H_{k}(W) \rightarrow H_{k-1}(U)$. Check that the resulting long sequence of homology groups is exact.
Note: In working through this problem you will need to refer to various homology classes [z]. You must remember that this notation is only meaningful when z is a cycle, i.e. it satisfies $d(z)=0$. It is easy to violate this rule by accident; you should check your work carefully to ensure that you have not done so.

Solution:

(a) We just need to check the condition $d^{2}=0$. For U and W we already have $d=0$. For v we have $d^{2}\left(v_{k}\right)=$ $d\left(8 v_{k-1}\right)=64 v_{k-2}$ but this is zero because v_{k-2} has order 16 .
(b) We have $d i\left(u_{k}\right)=d\left(4 v_{k}\right)=32 v_{k-1}$ which is again zero because v_{k-1} has order 16 . On the other hand, we have $i d\left(u_{k}\right)=i(0)=0$, so $d i=i d$. Next, we have $p d\left(v_{k}\right)=p\left(8 v_{k-1}\right)=8 w_{k-1}$, which is zero as w_{k-1} has order 4. On the other hand, we have $d=0$ on W so $d p\left(v_{k}\right)=0$ as well. This shows that $d p=p d$, so both i and p are chain maps.
(c) We have $i\left(m u_{k}\right)=4 m v_{k}$, so $i\left(m u_{k}\right)=0$ iff $4 m$ is divisible by 16 iff m is divisible by 4 iff $m u_{k}=0$. This proves that i is injective. We have $p\left(m v_{k}\right)=0$ iff $m w_{k}=0$ iff m is divisible by 4 , in which case we have $m v_{k}=i(m / 4) u_{k}$. Using this we see that $\operatorname{img}(i)=\operatorname{ker}(p)$. Finally, any element of W_{k} can be written as $m w_{k}$ for some $m \in \mathbb{Z}$, and this is the same as $p\left(m v_{k}\right)$, so p is surjective.
(d) As $d=0$ on U we have $Z_{*}(U)=U$ and $B_{*}(U)=0$ so $H_{*}(U)=Z_{*}(U) / B_{*}(U) \simeq U_{*}$. We write $a_{k}=\left[u_{k}\right]$, so $H_{k}(U)$ is a copy of $\mathbb{Z} / 4$ generated by a_{k}. Similarly, we write $c_{k}=\left[w_{k}\right]$, so $H_{k}(W)$ is a copy of $\mathbb{Z} / 4$ generated by c_{k}. Next, it is easy to see that $Z_{k}(V)$ is generated by $2 v_{k}$ but $B_{k}(V)$ is generated by $8 v_{k}$. Thus, if we put $b_{k}=\left[2 v_{k}\right]$ we find that $4 b_{k}=\left[8 v_{k}\right]=\left[d\left(v_{k+1}\right)\right]=0$ and in fact $H_{k}(V)$ is a copy of $\mathbb{Z} / 4$ generated by b_{k}. In summary, for all three of our complexes, every homology group is isomorphic to $\mathbb{Z} / 4$.
(e) We have $i_{*}\left(a_{k}\right)=\left[i\left(u_{k}\right)\right]=\left[4 v_{k}\right]=2 b_{k}$ and $p_{*}\left(b_{k}\right)=\left[p\left(2 v_{k}\right)\right]=\left[2 w_{k}\right]=2 c_{k}$.
(f) Consider the sequence $\left(c_{k}, w_{k}, v_{k}, 2 u_{k-1}, 2 a_{k-1}\right)$. The element w_{k} is a cycle representing the homology class c_{k}, and $p\left(v_{k}\right)=w_{k}$, and $d\left(v_{k}\right)=8 v_{k-1}=d\left(2 u_{k-1}\right)$, and $2 u_{k-1}$ is a cycle representing the class $2 a_{k-1}$. Thus, the above sequence is a snake, showing that $\delta\left(c_{k}\right)=2 a_{k-1}$. It follows that the long $\left(i_{*}, p_{*}, \delta\right)$-sequence has the form

$$
\ldots \rightarrow \mathbb{Z} / 4 \xrightarrow{2} \ldots
$$

and this is visibly exact, with $\mathrm{img}=\operatorname{ker}=\{0,2\} \subset\{0,1,2,3\}=\mathbb{Z} / 4$ at every stage.
Here are some pitfalls to look out for:

- It is tempting to write various expressions involving $\left[v_{k}\right]$, but this is not meaningful. We are working in the group $H_{k}(V)=Z_{k}(V) / B_{k}(V)$, but $d\left(v_{k}\right) \neq 0$ so $v_{k} \notin Z_{k}(V)$ so $\left[v_{k}\right]$ is undefined.
- In particular, it is not correct to rewrite $\left[2 v_{k}\right]$ as $2\left[v_{k}\right]$ or $\left[4 v_{k}\right]$ as $4\left[v_{k}\right]$ (but it is valid to note that $\left[4 v_{k}\right]=2\left[2 v_{k}\right]$).
- It is tempting to say that [$4 v_{k}$] is divisible by 4 and so counts as zero in the group $H_{1}(V) \simeq \mathbb{Z} / 4$. But again, this relies on writing $\left[4 v_{k}\right]$ as $4\left[v_{k}\right]$, which is invalid as we have explained. In fact, to say that the coset $\left[4 v_{k}\right]=4 v_{k}+B_{k}(V)$ is zero would mean that $4 v_{k}$ lies in the group $B_{k}(V)=\operatorname{img}\left(d: V_{k+1} \rightarrow V_{k}\right)$, but it is easy to see that $B_{k}(V)=\left\{0,8 v_{k}\right\}$ so this is false.

Exercise 2. Let U_{*} and W_{*} be chain complexes, and suppose we have maps $f_{n}: W_{n} \rightarrow U_{n-1}$ that satisfy $d f=$ $-f d: W_{n} \rightarrow U_{n-2}$. Put $V_{n}=U_{n} \oplus W_{n}$ and define $d: V_{n} \rightarrow V_{n-1}$ by

$$
d(u, w)=(d(u)+f(w), d(w))
$$

Define maps $U_{n} \xrightarrow{i} V_{n} \xrightarrow{p} W_{n}$ by $i(u)=(u, 0)$ and $p(u, w)=w$.
(a) Prove that V_{*} is a chain complex.
(b) Prove that i and p are chain maps and that the sequence $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ is short exact.
(c) Prove that the resulting map $\delta: H_{n}(W) \rightarrow H_{n-1}(U)$ satisfies $\delta([w])=[f(w)]$.

Solution:

(a) For $(u, w) \in V_{n}$ we have $d(u, w)=(d(u)+f(w), d(w))$, and for $\left(u^{\prime}, w^{\prime}\right) \in V_{n-1}$ we have $d\left(u^{\prime}, w^{\prime}\right)=\left(d\left(u^{\prime}\right)+\right.$ $\left.f\left(w^{\prime}\right), d\left(w^{\prime}\right)\right)$. By taking $u^{\prime}=d(u)+f(w)$ and $w^{\prime}=d(w)$, and using $d f=-f d$, we see that

$$
\begin{aligned}
d^{2}(u, w) & =d(d(u)+f(w), d(w)) \\
& =(d(d(u)+f(w))+f(d(w)), d(d(w)))=(0+d(f(w))+f(d(w)), 0)=(0,0)
\end{aligned}
$$

This proves that $d^{2}=0$ on V_{*}, so V_{*} is a chain complex.
(b) We now note that

$$
\begin{aligned}
i(d(u)) & =(d(u), 0)=(d(u)+f(0), d(0))=d(u, 0)=d(i(u)) \\
p(d(u, w)) & =p(d(u)+f(w), d(w))=d(w)=d(p(u, w))
\end{aligned}
$$

so i and p are chain maps. It is clear that $\operatorname{img}(i)=U_{*} \oplus 0=\operatorname{ker}(p)$, so the (i, p) sequence is short exact.
(c) Suppose we have a homology class $\bar{w}=[w] \in H_{n}(W)$, so $d(w)=0$. Put $v=(0, w) \in V_{n}$ and $u=f(w) \in U_{n-1}$. As $d f=-f d$ we see that $d(u)=-f(d(w))=-f(0)=0$, so we have a well-defined element $\bar{u}=[u] \in H_{n-1}(U)$. Now $p(v)=w$ and $d(v)=(d(0)+f(w), d(w))=(f(w), 0)=i(u)$. This proves that the list $(\bar{w}, w, v, u, \bar{u})$ is a snake, so $\delta(\bar{w})=\bar{u}$. By unwinding the notation, we can rewrite this as $\delta([w])=[f(w)]$, as claimed.

Exercise 3. Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{j} W_{*}$ be a short exact sequence of chain complexes and chain maps. Suppose that the groups $H_{n}(U)$ and $H_{n}(W)$ are finite for all n, and are zero when n is odd. Prove that $H_{n}(V)$ is finite for all n, with $\left|H_{n}(V)\right|=\left|H_{n}(U)\right|\left|H_{n}(W)\right|$.
Solution: When n is odd we have an exact sequence

$$
0=H_{n}(U) \xrightarrow{i_{*}} H_{n}(V) \xrightarrow{p_{*}} H_{n}(W)=0 .
$$

As $\operatorname{img}\left(i_{*}\right)=0$ and $\operatorname{ker}\left(p_{*}\right)=H_{n}(V)$ we see that $H_{n}(V)=0$, so $\left|H_{n}(U)\right|=\left|H_{n}(V)\right|=\left|H_{n}(W)\right|=1$ and the relation $\left|H_{n}(V)\right|=\left|H_{n}(U)\right|\left|H_{n}(W)\right|$ is trivially satisfied.

Suppose instead that n is even, so $n-1$ and $n+1$ are odd. We then have an exact sequence

$$
0=H_{n+1}(W) \xrightarrow{\delta} H_{n}(U) \xrightarrow{i_{*}} H_{n}(V) \xrightarrow{p_{*}} H_{n}(W) \xrightarrow{\delta} H_{n-1}(U)=0,
$$

or in other words a short exact sequence $H_{n}(U) \rightarrow H_{n}(V) \rightarrow H_{n}(W)$. It follows by Lemma 12.20 that $H_{n}(V)$ is finite with $\left|H_{n}(V)\right|=\left|H_{n}(U)\right|\left|H_{n}(W)\right|$.

Exercise 4. Let $U_{*} \xrightarrow{i} V_{*} \xrightarrow{p} W_{*}$ be a short exact sequence of chain maps between chain complexes. Suppose that for every $w \in W_{k}$ with $d w=0$ there exists $v \in V_{k}$ with $d v=0$ and $p v=w$. Prove that the sequence $H_{*}(U) \xrightarrow{i_{*}} H_{*}(V) \xrightarrow{p_{*}} H_{*}(W)$ is short exact.

Solution: Consider an element $c \in H_{k}(W)$. Choose a representing cycle $w \in Z_{k}(W)$. By the assumption in the question, we can choose $v \in V_{k}$ with $p v=w$ and $d v=0$. In other words, the element $0 \in U_{k-1}$ satisfies $i(0)=d(v)$. It follows that the sequence $(c, w, v, 0,0)$ is a snake, so $\delta(c)=0$. As c was arbitrary, the homomorphism $\delta: H_{k}(W) \rightarrow H_{k-1}(U)$ is zero for all k. We know already that the sequence

$$
H_{k+1}(W) \xrightarrow{\delta} H_{k}(U) \xrightarrow{i_{*}} H_{k}(V) \xrightarrow{p_{*}} H_{k}(W) \xrightarrow{\delta} H_{k-1}(U)
$$

is exact. As $\delta=0$, it follows that i_{*} is injective and p_{*} is surjective. This means that the sequence $H_{k}(U) \xrightarrow{i_{*}}$ $H_{k}(V) \xrightarrow{p_{*}} H_{k}(W)$ is short exact, as claimed.

