MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 13 - Solutions

Please hand in Exercises 2 and 3 by the Wednesday lecture of Week 7. I would prefer paper, but if that is not possible for some reason, then you can send me a scan by email.

Throughout this problem sheet we use the notation of Section 18 of the notes. In particular, we use the elements $\theta_{n} \in C_{n}\left(\Delta_{n}\right)$ and $\kappa_{n} \in C_{n+1}\left(\Delta_{n}\right)$ that are defined in that section.

Exercise 1. Example 18.5 gives the following formula:

$$
\theta_{2}=\left\langle e_{012}, e_{12}, e_{2}\right\rangle-\left\langle e_{012}, e_{12}, e_{1}\right\rangle-\left\langle e_{012}, e_{02}, e_{2}\right\rangle+\left\langle e_{012}, e_{02}, e_{0}\right\rangle+\left\langle e_{012}, e_{01}, e_{1}\right\rangle-\left\langle e_{012}, e_{01}, e_{0}\right\rangle
$$

We could write this with abbreviated notation as follows:

$$
\theta_{2}=\langle 012,12,2\rangle-\langle 012,12,1\rangle-\langle 012,02,2\rangle+\langle 012,02,0\rangle+\langle 012,01,1\rangle-\langle 012,01,0\rangle
$$

Use the same method and the same abbreviated notation to give a formula for θ_{3} (which should have 24 terms).

Solution:

$$
\begin{aligned}
\left(\delta_{0}\right)_{*}\left(\theta_{2}\right)= & \langle 123,23,3\rangle-\langle 123,23,2\rangle-\langle 123,13,3\rangle+\langle 123,13,1\rangle+\langle 123,12,2\rangle-\langle 123,12,1\rangle \\
\left(\delta_{1}\right)_{*}\left(\theta_{2}\right)= & \langle 023,23,3\rangle-\langle 023,23,2\rangle-\langle 023,03,3\rangle+\langle 023,03,0\rangle+\langle 023,02,2\rangle-\langle 023,02,0\rangle \\
\left(\delta_{2}\right)_{*}\left(\theta_{2}\right)= & \langle 013,13,3\rangle-\langle 013,13,1\rangle-\langle 013,03,3\rangle+\langle 013,03,0\rangle+\langle 013,01,1\rangle-\langle 013,01,0\rangle \\
\left(\delta_{3}\right)_{*}\left(\theta_{2}\right)= & \langle 012,12,2\rangle-\langle 012,12,1\rangle-\langle 012,02,2\rangle+\langle 012,02,0\rangle+\langle 012,01,1\rangle-\langle 012,01,0\rangle \\
\theta_{3}^{\prime}= & \langle 123,23,3\rangle-\langle 123,23,2\rangle-\langle 123,13,3\rangle+\langle 123,13,1\rangle+\langle 123,12,2\rangle-\langle 123,12,1\rangle- \\
& \langle 023,23,3\rangle+\langle 023,23,2\rangle+\langle 023,03,3\rangle-\langle 023,03,0\rangle-\langle 023,02,2\rangle+\langle 023,02,0\rangle+ \\
& \langle 013,13,3\rangle-\langle 013,13,1\rangle-\langle 013,03,3\rangle+\langle 013,03,0\rangle+\langle 013,01,1\rangle-\langle 013,01,0\rangle- \\
& \langle 012,12,2\rangle+\langle 012,12,1\rangle+\langle 012,02,2\rangle-\langle 012,02,0\rangle-\langle 012,01,1\rangle+\langle 012,01,0\rangle \\
\theta_{3}= & \langle 0123,123,23,3\rangle-\langle 0123,123,23,2\rangle-\langle 0123,123,13,3\rangle+\langle 0123,123,13,1\rangle+\langle 0123,123,12,2\rangle-\langle 0123,123,12,1\rangle- \\
& \langle 0123,023,23,3\rangle+\langle 0123,023,23,2\rangle+\langle 0123,023,03,3\rangle-\langle 0123,023,03,0\rangle-\langle 0123,023,02,2\rangle+\langle 0123,023,02,0\rangle+ \\
& \langle 0123,013,13,3\rangle-\langle 0123,013,13,1\rangle-\langle 0123,013,03,3\rangle+\langle 0123,013,03,0\rangle+\langle 0123,013,01,1\rangle-\langle 0123,013,01,0\rangle- \\
& \langle 0123,012,12,2\rangle+\langle 0123,012,12,1\rangle+\langle 0123,012,02,2\rangle-\langle 0123,012,02,0\rangle-\langle 0123,012,01,1\rangle+\langle 0123,012,01,0\rangle
\end{aligned}
$$

Exercise 2. Give formulae for κ_{1} (with 3 terms) and κ_{2} (with 16 terms). Use abbreviated notation as in the previous exercise.

Solution:

$$
\begin{aligned}
\kappa_{0}= & 0 \\
\kappa_{1}^{\prime}= & \iota_{1}-\theta_{1}=\langle 0,1\rangle-\langle 01,1\rangle+\langle 01,0\rangle \\
\kappa_{1}= & \beta\left(\kappa_{1}^{\prime}\right)=\langle 01,0,1\rangle-\langle 01,01,1\rangle+\langle 01,01,0\rangle \\
\iota_{2}-\theta_{2}= & \langle 0,1,2\rangle-\langle 012,12,2\rangle+\langle 012,12,1\rangle+\langle 012,02,2\rangle-\langle 012,02,0\rangle-\langle 012,01,1\rangle+\langle 012,01,0\rangle \\
\left(\delta_{0}\right)_{*}\left(\kappa_{1}\right)= & \langle 12,1,2\rangle-\langle 12,12,2\rangle+\langle 12,12,1\rangle \\
\left(\delta_{1}\right)_{*}\left(\kappa_{1}\right)= & \langle 02,0,2\rangle-\langle 02,02,2\rangle+\langle 02,02,0\rangle \\
\left(\delta_{2}\right)_{*}\left(\kappa_{1}\right)= & \langle 01,0,1\rangle-\langle 01,01,1\rangle+\langle 01,01,0\rangle \\
\sum_{i}(-1)^{i}\left(\delta_{i}\right)_{*}\left(\kappa_{1}\right)= & \langle 12,1,2\rangle-\langle 12,12,2\rangle+\langle 12,12,1\rangle- \\
& \langle 02,0,2\rangle+\langle 02,02,2\rangle-\langle 02,02,0\rangle+ \\
& \langle 01,0,1\rangle-\langle 01,01,1\rangle+\langle 01,01,0\rangle
\end{aligned}
$$

By applying β to the terms above we get

$$
\begin{aligned}
\kappa_{2}= & \beta\left(\kappa_{2}^{\prime}\right) \\
= & \langle 012,0,1,2\rangle- \\
& \langle 012,012,12,2\rangle+\langle 012,012,12,1\rangle+\langle 012,012,02,2\rangle- \\
& \langle 012,012,02,0\rangle-\langle 012,012,01,1\rangle+\langle 012,012,01,0\rangle- \\
& \langle 012,12,1,2\rangle+\langle 012,12,12,2\rangle-\langle 012,12,12,1\rangle+ \\
& \langle 012,02,0,2\rangle-\langle 012,02,02,2\rangle+\langle 012,02,02,0\rangle- \\
& \langle 012,01,0,1\rangle+\langle 012,01,01,1\rangle-\langle 012,01,01,0\rangle
\end{aligned}
$$

Exercise 3. We define slightly modified versions of sd and σ as follows. Define $\operatorname{sd}_{0}^{\prime}: C_{0}(X) \rightarrow C_{0}(X)$ to be the identity, and define $\sigma_{0}^{\prime}: C_{0}(X) \rightarrow C_{1}(X)$ to be zero. Define $\lambda, \rho: \Delta_{1} \rightarrow \Delta_{1}$ and $\phi: \Delta_{2} \rightarrow \Delta_{1}$ by

$$
\begin{aligned}
\lambda\left(t_{0}, t_{1}\right) & =\left(t_{0}+t_{1} / 2, t_{1} / 2\right) \\
\rho\left(t_{0}, t_{1}\right) & =\left(t_{0} / 2, t_{0} / 2+t_{1}\right) \\
\phi\left(t_{0}, t_{1}, t_{2}\right) & =\left(t_{0}+t_{1} / 2, t_{1} / 2+t_{2}\right) .
\end{aligned}
$$

For $u: \Delta_{1} \rightarrow X$ put $\operatorname{sd}_{1}^{\prime}(u)=u \circ \lambda+u \circ \rho \in C_{1}(X)$ and $\sigma_{1}^{\prime}(u)=-(u \circ \phi) \in C_{2}(X)$. Extend this linearly to define $\operatorname{sd}_{1}^{\prime}: C_{1}(X) \rightarrow C_{1}(X)$ and $\sigma_{1}^{\prime}: C_{1}(X) \rightarrow C_{2}(X)$.
(a) Check that $\partial\left(\sigma_{1}^{\prime}(u)\right)+\sigma_{0}^{\prime}(\partial(u))=u-\operatorname{sd}_{1}^{\prime}(u)$.
(b) What can you say about the relationship between sd_{1}^{\prime} and sd_{1} ?

Note: Here X is an arbitrary space, which may not have anything to do with \mathbb{R}^{N}. Even if $X=\mathbb{R}^{N}$, the map $u: \Delta_{1} \rightarrow X$ need not be linear. Thus, you should not be using ideas or notation that are only valid for linear simplices in \mathbb{R}^{N}.

Solution:

(a) Here we have $\sigma_{0}^{\prime}=0$ so we need only consider $\partial\left(\sigma_{1}^{\prime}(u)\right)$. Here $\sigma_{1}^{\prime}(u)=-(u \circ \phi)$ so

$$
\partial\left(\sigma_{1}^{\prime}(u)\right)=-u \circ \phi \circ \delta_{0}+u \circ \phi \circ \delta_{1}-u \circ \phi \circ \delta_{2}
$$

We also have

$$
\begin{aligned}
& \left(\phi \circ \delta_{0}\right)\left(t_{0}, t_{1}\right)=\phi\left(0, t_{0}, t_{1}\right)=\left(t_{0} / 2, t_{0} / 2+t_{1}\right)=\rho\left(t_{0}, t_{1}\right) \\
& \left(\phi \circ \delta_{1}\right)\left(t_{0}, t_{1}\right)=\phi\left(t_{0}, 0, t_{1}\right)=\left(t_{0}, t_{1}\right) \\
& \left(\phi \circ \delta_{2}\right)\left(t_{0}, t_{1}\right)=\phi\left(t_{0}, t_{1}, 0\right)=\left(t_{0}+t_{1} / 2, t_{1} / 2\right)=\lambda\left(t_{0}, t_{1}\right)
\end{aligned}
$$

so

$$
\partial\left(\sigma_{0}^{\prime}(u)\right)=-u \circ \rho+u-u \circ \lambda=u-\operatorname{sd}_{1}^{\prime}(u)
$$

as required.
(b) For a path u, we have

$$
\begin{aligned}
& \operatorname{sd}_{1}^{\prime}(u)=(\text { first half of } u)+(\text { second half of } u) \\
& \operatorname{sd}_{1}(u)=-(\text { first half of } u, \text { reversed })+(\text { second half of } u)
\end{aligned}
$$

