
MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 14 — Solutions

Please hand in exercise 1 by the end of Week 8.

Exercise 1. Let X be a graph, consisting of some points in R2 (called vertices) and straight edges between them.
We assume that no two edges intersect except at the endpoints. In this exercise we will work through the standard
calculation of H∗(X).

Part (a) below shows an example. However, you should give answers that work for any X, except in cases where
the question specifically tells you to use the example in (a).

By a combinatorial path in X we mean a sequence of vertices u0, . . . , ur such that each pair (ui, ui+1) is an edge
of X. The combinatorial distance between vertices a and b is the minimum possible length of a combinatorial path
between them.

(a) A spanning tree is a subgraph T ⊆ X that contains all of the vertices and some of the edges, with the property
that it is connected and contains no loops.

X

a

T

a

Show that there always exists a spanning tree. (Just choose a connected loop-free subgraph containing a with
as many edges as possible, and prove that it must be a spanning tree.) For the rest of this exercise, we choose
a spanning tree T and a vertex a ∈ T .

(b) Show that if x is a vertex of X, then there is a unique combinatorial path ux that goes from x to a without
visiting any vertex twice. Draw some examples of paths ux in the complex illustrated above.

(c) We also write ux for the sum of the edges in ux, considered as an element of C1(X). What is ∂(ux)?
(d) Define r(x) to be the first vertex on ux after x (to be interpreted as r(a) = a in the exceptional case where

x = a). In other words, r(x) is the vertex that we reach after taking one step towards a from x. Annotate the
above diagram to show the effect of the map r.

(e) Let e be an edge of T . Show that there is a vertex x such that the endpoints of e are x and r(x).
(f) Part (d) defined r as a map vert(T ) → vert(T ), where vert(T ) is the set of vertices of T . Explain how to

extend this to give a map r : T → T . Show that r is homotopic to the identity (but not by a linear homotopy).
Deduce that T is contractible.

(g) Now let the edges not in T be e1, . . . , em, where eq = (xq, yq). Define aq, bq, cq ∈ eq by

aq = 3
4xq +

1
4yq bq = 1

2xq +
1
2yq cq = 1

4xq +
3
4yq

Put zq = ⟨xq, yq⟩ − uxq
+ uyq

∈ C1(X). Prove that ∂(zq) = 0 (so we have a corresponding element hq = [zq] ∈
H1(X)).

(h) Put U = X \T , so U consists of the edges eq with the endpoints removed. Put V = X \{b1, . . . , bm}. Describe
the homology of U , V and U ∩ V in terms of the points aq, bq, cq and a.

(i) Use the Mayer-Vietoris sequence to show that H1(X) ≃ Zm.
(j) In the construction of the Mayer-Vietoris sequence we use the subcomplex C∗(U, V ) = C∗(U)+C∗(V ) ≤ C∗(X).

Show that zq ̸∈ C∗(U, V ). Find elements z′q ∈ C1(U) and z′′q ∈ C1(V ) such that sd2(zq) = z′q + z′′q , proving

that sd2(zq) ∈ C1(U, V ). (For this you will need to think about sd2(ux) and sd2(⟨xq, yq⟩). You can just leave

sd2(ux) as sd
2(ux) but you will need to analyse sd2(⟨xq, yq⟩) in more detail.)

(k) Use z′q and z′′q to find a snake involving sd2(zq) and thus compute δ(hq) in the Mayer-Vietoris sequence.
Conclude that the elements h1, . . . , hm give a basis for H1(X).

Solution:
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(a) There is at least one connected loop-free subcomplex containing a, namely {a}. We can list all possible
subcomplexes with these properties, and choose one that has as many edges as possible, say T . We claim that
T includes every vertex x. Indeed, asX is connected, we can choose a combinatorial path x = u0, u1, . . . , ur = a
from x to a. As ur = a we have ur ∈ T . Let i be the first index such that ui ∈ T . If i = 0 then x ∈ T as
required. Otherwise we have an edge e = (ui−1, ui) with one end in T and the other end not in T , so we can
add e to T without creating any loops or making it disconnected. This contradicts the assumed maximality
of T , so we must have x ∈ T after all. This proves that T is a spanning tree.

(b) As T is connected and contains all vertices, we can certainly choose a combinatorial path from x to a in T .
If we choose such a path of minimum possible length, then it cannot visit any vertex twice (because then
we could remove the segment between two visits to get a shorter path). Now suppose that v and w are two
different non-repeating paths from x to a in T . They must eventually meet at a; let y be the first place where
they meet. We can go along v from x to y, then backwards along w from y to x. This gives a loop in T ,
contrary to assumption. Thus, the non-repeating path from x to a in T is unique, and can be denoted by ux.

x

ux

a y

uy

a

(c) If the vertices in ux are x = v0, v1, . . . , vr = a then the corresponding chain is ux =
∑r

i=1⟨vi−1, vi⟩ giving
∂(ux) =

∑r
i=1(vi − vi−1) = vr − v0 = a− x.

(d) Each arrow runs from a vertex x to r(x).

a

(e) Let the endpoints of e be x and y. After exchanging x and y if necessary, we can assume that the length of
uy is less than or equal to the length of ux. Let v be the path from x to a consisting of e followed by uy. If x
occurred in uy, then the section of uy starting at x would be a combinatorial path from x to a shorter than
ux, which is impossible. Thus, x cannot occur in uy, so the path v has no repeats, so v must be the same as
ux. However, v starts with (x, y) whereas ex starts with (x, r(x)) so we must have r(x) = y.

(f) If u ∈ T is not a vertex then it lies in the interior of an edge, which has endpoints x and r(x) say by part (e).
This means that u = (1 − t)x + t r(x) for some t with 0 < t < 1. From the definition of r it is clear that
either r(x) = r2(x) = a, or there is an edge of T with endpoints {r(x), r2(x)}. We can therefore define
r(u) = (1− t) r(x) + t r2(x) ∈ T . The formula

r((1− t)x+ t r(x)) = (1− t) r(x) + t r2(x)

is clearly also valid when t = 0 or t = 1, so the map r : T → T is continuous on each edge of T . It is therefore
continuous on all of T by closed patching.

If the edges (x, r(x)) and (r(x), r2(x)) do not point in the same direction, then the line segment joining u to
r(u) will not lie within T . Thus, we do not have a linear homotopy between r and the identity. Nonetheless,
the map r is still homotopic to the identity: this should be visually clear, and the following definition gives a
formal proof:

h(s, (1− t)x+ t r(x)) =

{
(1− t− s)x+ (t+ s) r(x) if 0 ≤ s ≤ 1− t

(2− t− s)r(x) + (t+ s− 1) r2(x) if 1− t ≤ s ≤ 1.
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(Alternatively, we can define rk : vert(T ) → vert(T ) by

rk(x) =

{
x if len(ux) < k

r(x) if len(ux) ≥ k.

We can then define rk((1− t)x+ t r(x)) = (1− t)rk(x)+ t rk(r(x)). We then find that r0 = id and rk is linearly
homotopic to rk+1 and that rk = r when k is large.) It follows that rn is also homotopic to the identity for all
n. However, when n is sufficiently large, rn is the constant map with value a. It follows that T is contractible.

(g) We saw in (c) that ∂(ux) = x− a. It follows that

∂(zq) = ∂(⟨xq, yq⟩)− ∂(uxq
) + ∂(uyq

) = (yq − xq)− (a− xq) + (a− yq) = 0.

(h) Put Uq = eq \ {xq, yq}. Then U is the disjoint union of the spaces Uq, and each Uq is contractible, and Uq

is the path component of bq. It follows that H0(U) = Z{[b1], . . . , [bm]}, and all other homology groups are
trivual.

Similarly, the space U ∩ V is the disjoint union of the sets Uq \ {bq}. Moreover, Uq \ {bq} is the disjoint
union of two open intervals, one of which is the component of aq, and the other is the component of cq. It
follows that

H0(U ∩ V ) = Z{[a1], . . . , [am], [c1], . . . , [cm]},
and all other homology groups are trivial. We also know that X is connected so H0(X) = Z[a] but we do not
yet know about the other homology groups.

Finally, the set V consists of T with some half-open intervals attached by their endpoints. We can shrink
these intervals back to their endpoints, so V is homotopy equivalent to T and so is contractible. It follows
that H0(V ) = Z.[a] and all other homology groups are trivial.

(i) We have inclusion maps

U ∩ V U

V X,

i

j k

l

and the associated maps on H0 are given by

i∗([aq]) = i∗([cq]) = [bq]

j∗([aq]) = j∗([cq]) = [a]

k∗([bq]) = l∗([a]) = [a].

The only interesting part of the Mayer-Vietoris sequence is

0 = H1(U)⊕H1(V ) → H1(X)
δ−→ H1(U ∩ V )

[
i∗
−j∗

]
−−−−→ H1(U)⊕H1(V ).

The kernel of the map
[

i∗
−j∗

]
is easily seen to be the free abelian group generated by the elements cq − aq (for

1 ≤ q ≤ m). Exactness means that δ gives an isomorphism from H1(X) to this kernel. Thus, there is a unique
element wq ∈ H1(X) with δ(wq) = cq − aq, and the elements w1, . . . , wm give a basis for H1(X) over Z. The
Mayer-Vietoris sequence also shows easily that Hj(X) = 0 for j > 1.

(j) The chain zq involves ⟨xq, yq⟩. This contains the point xq which is not in U , and also the point bq which is
not in V , so ⟨xq, yq⟩ is not in S1(U) ∪ S1(V ), so zq is not in C1(U, V ). On the other hand, we have

sd(⟨xq, yq⟩) = ⟨bq, yq⟩ − ⟨bq, xq⟩

sd2(⟨xq, yq⟩) = ⟨cq, yq⟩ − ⟨cq, bq⟩ − ⟨aq, xq⟩+ ⟨aq, bq⟩.
We can thus put

z′q = −⟨cq, bq⟩+ ⟨aq, bq⟩

z′′q = ⟨cq, yq⟩ − ⟨aq, xq⟩ − sd2(uxq
) + sd2(uyq

).

We find that z′q ∈ C1(U) and z′′q ∈ C1(V ) and z′q + z′′q = sd2(zq) as required.

(k) It is easy to see that ∂(z′q) = cq − aq. We also have ∂(sd2(zq)) = sd2(∂(zq)) = ∂(0) = 0, so we must have
∂(z′′q ) = aq − cq. Note here that aq, cq ∈ U ∩ V so we can regard cq − aq as an element of C0(U ∩ V ), and it
satisfies [

i#
−j#

]
(cq − aq) = (cq − aq, aq − cq) = ∂(z′q, z

′′
q ).

It follows that the list
(hq, sd

2(zq), (z
′
q, z

′′
q ), cq − aq, [cq]− [aq])
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is a snake for the showt exact sequence

C∗(U ∩ V )

[
i#
−j#

]
−−−−−→ C∗(U)⊕ C∗(V )

[ k# l# ]−−−−−→ C∗(U, V ),

proving that δ(hq) = [cq]− [aq]. This means that hq is the same as the element that we called wq in part (h),
so the list (h1, . . . , hm) is a basis for H1(X) as claimed.
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