MAS61015 ALGEBRAIC TOPOLOGY - PROBLEM SHEET 14 - Solutions

Please hand in exercise 1 by the end of Week 8.
Exercise 1. Let X be a graph, consisting of some points in \mathbb{R}^{2} (called vertices) and straight edges between them. We assume that no two edges intersect except at the endpoints. In this exercise we will work through the standard calculation of $H_{*}(X)$.

Part (a) below shows an example. However, you should give answers that work for any X, except in cases where the question specifically tells you to use the example in (a).

By a combinatorial path in X we mean a sequence of vertices u_{0}, \ldots, u_{r} such that each pair $\left(u_{i}, u_{i+1}\right)$ is an edge of X. The combinatorial distance between vertices a and b is the minimum possible length of a combinatorial path between them.
(a) A spanning tree is a subgraph $T \subseteq X$ that contains all of the vertices and some of the edges, with the property that it is connected and contains no loops.

Show that there always exists a spanning tree. (Just choose a connected loop-free subgraph containing a with as many edges as possible, and prove that it must be a spanning tree.) For the rest of this exercise, we choose a spanning tree T and a vertex $a \in T$.
(b) Show that if x is a vertex of X, then there is a unique combinatorial path u_{x} that goes from x to a without visiting any vertex twice. Draw some examples of paths u_{x} in the complex illustrated above.
(c) We also write u_{x} for the sum of the edges in u_{x}, considered as an element of $C_{1}(X)$. What is $\partial\left(u_{x}\right)$?
(d) Define $r(x)$ to be the first vertex on u_{x} after x (to be interpreted as $r(a)=a$ in the exceptional case where $x=a)$. In other words, $r(x)$ is the vertex that we reach after taking one step towards a from x. Annotate the above diagram to show the effect of the map r.
(e) Let e be an edge of T. Show that there is a vertex x such that the endpoints of e are x and $r(x)$.
(f) Part (d) defined r as a map $\operatorname{vert}(T) \rightarrow \operatorname{vert}(T)$, where $\operatorname{vert}(T)$ is the set of vertices of T. Explain how to extend this to give a map $r: T \rightarrow T$. Show that r is homotopic to the identity (but not by a linear homotopy). Deduce that T is contractible.
(g) Now let the edges not in T be e_{1}, \ldots, e_{m}, where $e_{q}=\left(x_{q}, y_{q}\right)$. Define $a_{q}, b_{q}, c_{q} \in e_{q}$ by

$$
a_{q}=\frac{3}{4} x_{q}+\frac{1}{4} y_{q} \quad b_{q}=\frac{1}{2} x_{q}+\frac{1}{2} y_{q} \quad c_{q}=\frac{1}{4} x_{q}+\frac{3}{4} y_{q}
$$

Put $z_{q}=\left\langle x_{q}, y_{q}\right\rangle-u_{x_{q}}+u_{y_{q}} \in C_{1}(X)$. Prove that $\partial\left(z_{q}\right)=0$ (so we have a corresponding element $h_{q}=\left[z_{q}\right] \in$ $\left.H_{1}(X)\right)$.
(h) Put $U=X \backslash T$, so U consists of the edges e_{q} with the endpoints removed. Put $V=X \backslash\left\{b_{1}, \ldots, b_{m}\right\}$. Describe the homology of U, V and $U \cap V$ in terms of the points a_{q}, b_{q}, c_{q} and a.
(i) Use the Mayer-Vietoris sequence to show that $H_{1}(X) \simeq \mathbb{Z}^{m}$.
(j) In the construction of the Mayer-Vietoris sequence we use the subcomplex $C_{*}(U, V)=C_{*}(U)+C_{*}(V) \leq C_{*}(X)$. Show that $z_{q} \notin C_{*}(U, V)$. Find elements $z_{q}^{\prime} \in C_{1}(U)$ and $z_{q}^{\prime \prime} \in C_{1}(V)$ such that $\operatorname{sd}^{2}\left(z_{q}\right)=z_{q}^{\prime}+z_{q}^{\prime \prime}$, proving that $\operatorname{sd}^{2}\left(z_{q}\right) \in C_{1}(U, V)$. (For this you will need to think about $\operatorname{sd}^{2}\left(u_{x}\right)$ and $\operatorname{sd}^{2}\left(\left\langle x_{q}, y_{q}\right\rangle\right)$. You can just leave $\operatorname{sd}^{2}\left(u_{x}\right)$ as $\operatorname{sd}^{2}\left(u_{x}\right)$ but you will need to analyse $\operatorname{sd}^{2}\left(\left\langle x_{q}, y_{q}\right\rangle\right)$ in more detail.)
(k) Use z_{q}^{\prime} and $z_{q}^{\prime \prime}$ to find a snake involving $\mathrm{sd}^{2}\left(z_{q}\right)$ and thus compute $\delta\left(h_{q}\right)$ in the Mayer-Vietoris sequence. Conclude that the elements h_{1}, \ldots, h_{m} give a basis for $H_{1}(X)$.

Solution:

(a) There is at least one connected loop-free subcomplex containing a, namely $\{a\}$. We can list all possible subcomplexes with these properties, and choose one that has as many edges as possible, say T. We claim that T includes every vertex x. Indeed, as X is connected, we can choose a combinatorial path $x=u_{0}, u_{1}, \ldots, u_{r}=a$ from x to a. As $u_{r}=a$ we have $u_{r} \in T$. Let i be the first index such that $u_{i} \in T$. If $i=0$ then $x \in T$ as required. Otherwise we have an edge $e=\left(u_{i-1}, u_{i}\right)$ with one end in T and the other end not in T, so we can add e to T without creating any loops or making it disconnected. This contradicts the assumed maximality of T, so we must have $x \in T$ after all. This proves that T is a spanning tree.
(b) As T is connected and contains all vertices, we can certainly choose a combinatorial path from x to a in T. If we choose such a path of minimum possible length, then it cannot visit any vertex twice (because then we could remove the segment between two visits to get a shorter path). Now suppose that v and w are two different non-repeating paths from x to a in T. They must eventually meet at a; let y be the first place where they meet. We can go along v from x to y, then backwards along w from y to x. This gives a loop in T, contrary to assumption. Thus, the non-repeating path from x to a in T is unique, and can be denoted by u_{x}.

(c) If the vertices in u_{x} are $x=v_{0}, v_{1}, \ldots, v_{r}=a$ then the corresponding chain is $u_{x}=\sum_{i=1}^{r}\left\langle v_{i-1}, v_{i}\right\rangle$ giving $\partial\left(u_{x}\right)=\sum_{i=1}^{r}\left(v_{i}-v_{i-1}\right)=v_{r}-v_{0}=a-x$.
(d) Each arrow runs from a vertex x to $r(x)$.

(e) Let the endpoints of e be x and y. After exchanging x and y if necessary, we can assume that the length of u_{y} is less than or equal to the length of u_{x}. Let v be the path from x to a consisting of e followed by u_{y}. If x occurred in u_{y}, then the section of u_{y} starting at x would be a combinatorial path from x to a shorter than u_{x}, which is impossible. Thus, x cannot occur in u_{y}, so the path v has no repeats, so v must be the same as u_{x}. However, v starts with (x, y) whereas e_{x} starts with $(x, r(x))$ so we must have $r(x)=y$.
(f) If $u \in T$ is not a vertex then it lies in the interior of an edge, which has endpoints x and $r(x)$ say by part (e). This means that $u=(1-t) x+\operatorname{tr}(x)$ for some t with $0<t<1$. From the definition of r it is clear that either $r(x)=r^{2}(x)=a$, or there is an edge of T with endpoints $\left\{r(x), r^{2}(x)\right\}$. We can therefore define $r(u)=(1-t) r(x)+t^{2}(x) \in T$. The formula

$$
r((1-t) x+t r(x))=(1-t) r(x)+t r^{2}(x)
$$

is clearly also valid when $t=0$ or $t=1$, so the map $r: T \rightarrow T$ is continuous on each edge of T. It is therefore continuous on all of T by closed patching.

If the edges $(x, r(x))$ and $\left(r(x), r^{2}(x)\right)$ do not point in the same direction, then the line segment joining u to $r(u)$ will not lie within T. Thus, we do not have a linear homotopy between r and the identity. Nonetheless, the map r is still homotopic to the identity: this should be visually clear, and the following definition gives a formal proof:

$$
h(s,(1-t) x+\operatorname{tr}(x))= \begin{cases}(1-t-s) x+(t+s) r(x) & \text { if } 0 \leq s \leq 1-t \\ (2-t-s) r(x)+(t+s-1) r^{2}(x) & \text { if } 1-t \leq s \leq 1 .\end{cases}
$$

(Alternatively, we can define $r_{k}: \operatorname{vert}(T) \rightarrow \operatorname{vert}(T)$ by

$$
r_{k}(x)= \begin{cases}x & \text { if } \operatorname{len}\left(u_{x}\right)<k \\ r(x) & \text { if } \operatorname{len}\left(u_{x}\right) \geq k\end{cases}
$$

We can then define $r_{k}((1-t) x+t r(x))=(1-t) r_{k}(x)+t r_{k}(r(x))$. We then find that $r_{0}=\mathrm{id}$ and r_{k} is linearly homotopic to r_{k+1} and that $r_{k}=r$ when k is large.) It follows that r^{n} is also homotopic to the identity for all n. However, when n is sufficiently large, r^{n} is the constant map with value a. It follows that T is contractible.
(g) We saw in (c) that $\partial\left(u_{x}\right)=x-a$. It follows that

$$
\partial\left(z_{q}\right)=\partial\left(\left\langle x_{q}, y_{q}\right\rangle\right)-\partial\left(u_{x_{q}}\right)+\partial\left(u_{y_{q}}\right)=\left(y_{q}-x_{q}\right)-\left(a-x_{q}\right)+\left(a-y_{q}\right)=0
$$

(h) Put $U_{q}=e_{q} \backslash\left\{x_{q}, y_{q}\right\}$. Then U is the disjoint union of the spaces U_{q}, and each U_{q} is contractible, and U_{q} is the path component of b_{q}. It follows that $H_{0}(U)=\mathbb{Z}\left\{\left[b_{1}\right], \ldots,\left[b_{m}\right]\right\}$, and all other homology groups are trivual.

Similarly, the space $U \cap V$ is the disjoint union of the sets $U_{q} \backslash\left\{b_{q}\right\}$. Moreover, $U_{q} \backslash\left\{b_{q}\right\}$ is the disjoint union of two open intervals, one of which is the component of a_{q}, and the other is the component of c_{q}. It follows that

$$
H_{0}(U \cap V)=\mathbb{Z}\left\{\left[a_{1}\right], \ldots,\left[a_{m}\right],\left[c_{1}\right], \ldots,\left[c_{m}\right]\right\}
$$

and all other homology groups are trivial. We also know that X is connected so $H_{0}(X)=\mathbb{Z}[a]$ but we do not yet know about the other homology groups.

Finally, the set V consists of T with some half-open intervals attached by their endpoints. We can shrink these intervals back to their endpoints, so V is homotopy equivalent to T and so is contractible. It follows that $H_{0}(V)=\mathbb{Z} .[a]$ and all other homology groups are trivial.
(i) We have inclusion maps

and the associated maps on H_{0} are given by

$$
\begin{aligned}
i_{*}\left(\left[a_{q}\right]\right) & =i_{*}\left(\left[c_{q}\right]\right)=\left[b_{q}\right] \\
j_{*}\left(\left[a_{q}\right]\right) & =j_{*}\left(\left[c_{q}\right]\right)=[a] \\
k_{*}\left(\left[b_{q}\right]\right) & =l_{*}([a])=[a] .
\end{aligned}
$$

The only interesting part of the Mayer-Vietoris sequence is

$$
0=H_{1}(U) \oplus H_{1}(V) \rightarrow H_{1}(X) \xrightarrow{\delta} H_{1}(U \cap V) \xrightarrow{\left[\begin{array}{c}
i_{*} \\
-j_{*}
\end{array}\right]} H_{1}(U) \oplus H_{1}(V)
$$

The kernel of the map $\left[\begin{array}{c}i_{*} \\ -j_{*}\end{array}\right]$ is easily seen to be the free abelian group generated by the elements $c_{q}-a_{q}$ (for $1 \leq q \leq m)$. Exactness means that δ gives an isomorphism from $H_{1}(X)$ to this kernel. Thus, there is a unique element $w_{q} \in H_{1}(X)$ with $\delta\left(w_{q}\right)=c_{q}-a_{q}$, and the elements w_{1}, \ldots, w_{m} give a basis for $H_{1}(X)$ over \mathbb{Z}. The Mayer-Vietoris sequence also shows easily that $H_{j}(X)=0$ for $j>1$.
(j) The chain z_{q} involves $\left\langle x_{q}, y_{q}\right\rangle$. This contains the point x_{q} which is not in U, and also the point b_{q} which is not in V, so $\left\langle x_{q}, y_{q}\right\rangle$ is not in $S_{1}(U) \cup S_{1}(V)$, so z_{q} is not in $C_{1}(U, V)$. On the other hand, we have

$$
\begin{aligned}
\operatorname{sd}\left(\left\langle x_{q}, y_{q}\right\rangle\right) & =\left\langle b_{q}, y_{q}\right\rangle-\left\langle b_{q}, x_{q}\right\rangle \\
\operatorname{sd}^{2}\left(\left\langle x_{q}, y_{q}\right\rangle\right) & =\left\langle c_{q}, y_{q}\right\rangle-\left\langle c_{q}, b_{q}\right\rangle-\left\langle a_{q}, x_{q}\right\rangle+\left\langle a_{q}, b_{q}\right\rangle
\end{aligned}
$$

We can thus put

$$
\begin{aligned}
& z_{q}^{\prime}=-\left\langle c_{q}, b_{q}\right\rangle+\left\langle a_{q}, b_{q}\right\rangle \\
& z_{q}^{\prime \prime}=\left\langle c_{q}, y_{q}\right\rangle-\left\langle a_{q}, x_{q}\right\rangle-\operatorname{sd}^{2}\left(u_{x_{q}}\right)+\operatorname{sd}^{2}\left(u_{y_{q}}\right)
\end{aligned}
$$

We find that $z_{q}^{\prime} \in C_{1}(U)$ and $z_{q}^{\prime \prime} \in C_{1}(V)$ and $z_{q}^{\prime}+z_{q}^{\prime \prime}=\operatorname{sd}^{2}\left(z_{q}\right)$ as required.
(k) It is easy to see that $\partial\left(z_{q}^{\prime}\right)=c_{q}-a_{q}$. We also have $\partial\left(\operatorname{sd}^{2}\left(z_{q}\right)\right)=\operatorname{sd}^{2}\left(\partial\left(z_{q}\right)\right)=\partial(0)=0$, so we must have $\partial\left(z_{q}^{\prime \prime}\right)=a_{q}-c_{q}$. Note here that $a_{q}, c_{q} \in U \cap V$ so we can regard $c_{q}-a_{q}$ as an element of $C_{0}(U \cap V)$, and it satisfies

$$
\left[\begin{array}{c}
i_{\#} \\
-j_{\#}
\end{array}\right]\left(c_{q}-a_{q}\right)=\left(c_{q}-a_{q}, a_{q}-c_{q}\right)=\partial\left(z_{q}^{\prime}, z_{q}^{\prime \prime}\right)
$$

It follows that the list

$$
\left(h_{q}, \operatorname{sd}^{2}\left(z_{q}\right),\left(z_{q}^{\prime}, z_{q}^{\prime \prime}\right), c_{q}-a_{q},\left[c_{q}\right]-\left[a_{q}\right]\right)
$$

is a snake for the showt exact sequence

$$
C_{*}(U \cap V) \xrightarrow{\left[\begin{array}{c}
i_{\#} \\
-j_{\#}
\end{array}\right]} C_{*}(U) \oplus C_{*}(V) \xrightarrow{\left[k_{\#} l_{\#}\right]} C_{*}(U, V),
$$

proving that $\delta\left(h_{q}\right)=\left[c_{q}\right]-\left[a_{q}\right]$. This means that h_{q} is the same as the element that we called w_{q} in part (h), so the list $\left(h_{1}, \ldots, h_{m}\right)$ is a basis for $H_{1}(X)$ as claimed.

