
MAS61015 ALGEBRAIC TOPOLOGY — PROBLEM SHEET 15 — Solutions

Please hand in exercises 3 and 4 by the Wednesday lecture of Week 10.

Exercise 1. Recall that the Möbius strip can be defined as

M = {(z, w) ∈ S1 ×B2 | w2/z ∈ [0, 1] ⊆ R ⊆ C}.
Show that there is a covering map p : S1 × [−1, 1] → M .

Solution: We can define p : S1 × [−1, 1] → S1 × B2 by p(u, t) = (u2, ut), and it is clear that p(−u,−t) = p(u, t)
for all (u, t) ∈ S1 × [−1, 1]. If (z, w) = (u2, ut) then w2/z = (ut)2/u2 = t2 ∈ [0, 1], so we see that the image of p is
contained in M . For (z, w) ∈ M we can choose u ∈ S1 such that u2 = z, and then put t = w/u. As (z, w) ∈ M
we have t2 = (w/u)2 = w2/z ∈ [0, 1] so t ∈ [−1, 1]. From the definition of t we have ut = w, and it follows that
p(u, t) = (z, w). More generally, for (v, s) ∈ S1 × [−1, 1] we have p(v, s) = (z, w) iff (v2, vs) = (u2, ut) and it is easy to
see that this holds iff (v, s) = (−1)m(u, t) for some m ∈ {0, 1}. This proves that |p−1{(z, w)}| = 2 for all (z, w) ∈ M ,
and so suggests that p is a covering map. To make this more rigorous, put

U = {(a, b) ∈ M | a ̸= −z}.
This is clearly an open subset of M containing (z, w). We have (v, s) ∈ p−1(U) iff (v/u)2 ̸= −1. As v/u ∈ S1, the
condition (v/u)2 ̸= −1 is equivalent to Re(v/u) ̸= 0. We can therefore define f : p−1(U) → {0, 1} by

f(v, s) =

{
0 if Re(v/u) > 0

1 if Re(v/u) < 0.

This is continuous by open patching, and so gives a continuous map ⟨p, f⟩ : p−1(U) → U × {0, 1}, and one can check
that this is in fact a homeomorphism. This proves that we have a covering, as claimed.

Exercise 2. Let p : X → Y be a covering map. Let Y0 be a subset of Y , and put X0 = p−1(Y0), so we have a restricted
map p0 : X0 → Y0. Give X0 and Y0 the subspace topologies inherited from X and Y respectively. Prove that p0 is
also a covering.

Solution: Consider a point y ∈ Y0. As p is a covering, we can choose an open subset V ⊆ Y with y ∈ V , and a
continuous map f : p−1(V ) → F (for some discrete space F ) such that the combined map ⟨p, f⟩ : p−1(V ) → V × F
is a homeomorphism. Put V0 = V ∩ Y0, so V0 is open in Y0 and y ∈ V0 and V0 ⊆ V . It follows that the set
p−1
0 (V0) = p−1(V0) is a subset of p−1(V ), so we can define f0 : p

−1
0 (V0) → F to be the restriction of f . This is again

continuous (by Proposition 3.28). It follows that the combined map ⟨p0, f0⟩ : p−1
0 (V0) → V0 × F is also continuous. It

will be enough to show that this is a homeomorphism.
Now let m : V × F → p−1(V ) be the inverse of ⟨p, f⟩ : p−1(V ) → V × F , so m is continuous by assumption.

For y ∈ V0 and s ∈ F we have ⟨p, f⟩(m(y, s)) = (y, s), which means that p(m(y, s)) = y and f(m(y, s)) = s. As
p(m(y, s)) = y with y ∈ V0 we see that m(y, s) ∈ p−1(V0) = p−1

0 (V0). We can thus define m0 : V0 × F → p−1
0 (V0) by

m0(y, s) = m(y, s). This fits in a commutative diagram

V0 × F p−1
0 (V0)

V × F p−1(V ).

m0

inc×id inc

m

It follows using Proposition 3.28) that m0 is continuous. From the fact that m is inverse to ⟨p, f⟩, it follows easily
that m0 is inverse to ⟨p0, f0⟩. It follows that ⟨p0, f0⟩ is a homeomorphism as required.

Exercise 3. Suppose that p0 : X0 → Y0 and p1 : X1 → Y1 are covering maps. Define p = p0× p1 : X0×X1 → Y0×Y1,
so p(x0, x1) = (p0(x0), p1(x1)). Show that p is a covering map (with respect to the product topologies on X0 × X1

and Y0 × Y1).

Solution: Consider a point y = (y0, y1) ∈ Y0 × Y1. As p0 : X0 → Y0 is a covering, we can find a discrete space
F0, an open subset V0 ⊆ Y0 containing Y0, and a continuous map f0 : p

−1
0 (V0) → F0 such that the combined map

⟨p0, f0⟩ : p−1
0 (V0) → V0×F0 is a homeomorphism. Similarly, as p1 : X1 → Y1 is a covering, we can find a discrete space

F1, an open subset V1 ⊆ Y1 containing Y1, and a continuous map f1 : p
−1
1 (V1) → F1 such that the combined map

⟨p1, f1⟩ : p−1
1 (V1) → V1×F1 is a homeomorphism. It will be convenient to write Ui for p

−1
i (Vi) and let mi : Vi×Fi → Ui

be the inverse of the homeomorphism ⟨pi, fi⟩ : Ui → Vi × Fi.
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Now note that the box V = V0 × V1 is an open subset of Y0 × Y1 which contains y. Put U = p−1(V ), which is an
open subset of X0×X1. We claim that U = U0×U1, or equivalently p−1(V ) = p−1

0 (V0)× p−1
1 (V1). Indeed, for a point

x = (x0, x1) ∈ X0 ×X1 we have

x ∈ p−1(V ) ⇔ the element p(x) = (p0(x0), p1(x1)) lies in the set V = V0 × V1

⇔ p0(x0) ∈ V0 and p1(x1) ∈ V1

⇔ x0 ∈ p−1
0 (V0) and x1 ∈ p−1

1 (V1)

⇔ x ∈ p−1
0 (V0)× p−1

1 (V1),

as required. We can thus define a map

f : U = U0 × U1 → F0 × F1

by f(x0, x1) = (f0(x0), f1(x1)). We can also define a map

m : V × F0 × F1 = V0 × V1 × F0 × F1 → U0 × U1 = U

by m(y0, y1, s0, s1) = (m0(y0, s0), m1(y1, s1)). It is easy to see that f and m are continuous and that m is inverse to
⟨p, f⟩, so V0 × V1 is trivially covered, as required.

Exercise 4. Let T = S1 × S1 be the torus, and define p : T → T by p(u, v) = (u2, v2). Prove that p is a covering.
Put Y = {(u, v) ∈ T | u = 1 or v = 1} and X = p−1(Y ). Draw a picture of X, as a finite collection of points and
arcs joining them. Draw a similar picture of Y , and annotate your pictures to illustrate the effect of the covering map
p : X → Y .

Solution: Consider a point (x, y) ∈ T . Choose u1, v1 ∈ S1 with u2
1 = x and v21 = y. Put

V = {(s, t) ∈ T | s ̸= −x and t ̸= −y}.

For (u, v) ∈ T we have

(u, v) ∈ p−1(V ) ⇔ p(u, v) ∈ V

⇔ u2 ̸= −x and v2 ̸= −y

⇔ (u/u1)
2 ̸= −1 and (v/v1)

2 ̸= −1

⇔ (u/u1) ̸= ±i and (v/v1) ̸= ±i

⇔ Re(u/u1) ̸= 0 and Re(v/v1) ̸= 0.

Now define a continuous map σ : R \ {0} → {1,−1} by

σ(t) = t/|t| =

{
1 if t > 0

−1 if t < 0.

Using this, we can define f : p−1(V ) → {1, 1}2 by

f(u, v) = (σ(Re(u/u1)), σ(Re(u/u1)).

It is then easy to see that the combined map ⟨p, f⟩ : p−1(V ) → V ×{1,−1}2 is a homeomorphism. This proves that p
is a covering.

Now put Y = {(s, t) ∈ T | s = 1 or t = 1} and

X = p−1(Y ) = {(u, v) ∈ T | u2 = 1 or v2 = 1}
= {(u, v) ∈ T | u = 1 or u = −1 or v = 1 or v = −1}.

Put A = S1 × {1} and B = {1} × S1, so Y = A ∪B. Put

A0 = {(u, 1) | u ∈ S1, Im(u) ≥ 0} A1 = {(u, 1) | u ∈ S1, Im(u) ≤ 0}
A2 = {(u,−1) | u ∈ S1, Im(u) ≥ 0} A3 = {(u,−1) | u ∈ S1, Im(u) ≤ 0}
B0 = {(1, v) | v ∈ S1, Im(v) ≥ 0} B1 = {(1, v) | v ∈ S1, Im(v) ≤ 0}
B2 = {(−1, v) | v ∈ S1, Im(v) ≥ 0} B3 = {(−1, v) | v ∈ S1, Im(v) ≤ 0}.

Then X is the union of these 8 sets, and p maps each set Ai to A, and each set Bi to B. Everything can be illustrated
as follows:
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A B A0 A2 A3 A1

B0 B1

B2 B3

Exercise 5. Let p : X → Y be a 1-sheeted covering. Prove that p is a homeomorphism.

Solution: Because p is a 1-sheeted covering, for each y ∈ Y we have |p−1{y}| = 1, so p−1{y} = {s(y)} for some element
s(y) ∈ X. As s(y) ∈ p−1{y} we have p(s(y)) ∈ {y} or equivalently p(s(y)) = y. This proves that p ◦ s = id: Y → Y .
Now suppose we start with x ∈ X and consider the point x′ = s(p(y)) As p ◦ s = id we have p(x′) = p(s(p(y))) = p(y).
This means that x′, y ∈ p−1{p(y)}, but |p−1{p(y)} = 1, so we must have x′ = y. Here x′ was defined to be s(p(y)), so
we conclude that s(p(y)) = y, or in other words s ◦ p = id: X → X. Form this we see that p is a bijection with inverse
s. All that is left is to check that s is continuous.

For this we make the following preliminary claim: if V ⊆ Y is a trivially covered open set, then the map p : p−1(V ) →
V is a homeomorphism. This is clear if V = ∅, so suppose instead that V ̸= ∅, and choose a point a ∈ V . As V is
trivially covered, we can choose a discrete space F and a continuous map f : p−1(V ) → F such that the combined
map ⟨p, f⟩ : p−1(V ) → V × F is a homeomorphism. It follows that f gives a bijection p−1{a} → F , but |p−1{a}| = 1,
so |F | = 1. As |F | = 1 we see that the projection V × F → V is a homeomorphism, and we can compose this with
the map ⟨p, f⟩ to see that the map p : p−1(V ) → V is a homeomorphism as claimed.

Now consider an open set U ⊆ X; we need to check that the set W = s−1(U) = p(U) ⊆ Y is open in Y . It will be
enough to check that for each y ∈ W there is an open set V with y ∈ V ⊆ W . As p is a covering we can choose a
trivially covered open set V0 containing y. The set U0 = U ∩p−1(V0) is open in p−1(V0), and the map p : p−1(V0) → V0

is a homeomorphism, so the set p(U0) = p(U)∩ V0 is open in V0. As V0 is open in Y it follows that p(U0) is also open
in Y (by Lemma 3.30). It is also clear that y ∈ p(U0) and p(U0) ⊆ p(U) = W , so we can take V = p(U0) and this has
the required properties.
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